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1 Introduction: Norman I. Badler

This Quarterly Report includes descriptions of various projects underway in liter Comnputer Graphics
Research Lab during October through December 1993. These reports include:

* Additional features of Jack0®94 (v.5.8) as well as updates on various projects underway in the
Lab.

* A description of the refObject Class in Jack.

* An update on the integration of the collision avoidance systenr into Jack "9l (v.5.•). including
torso collision avoidance.

* An introduction to path planning using the simulation of fluid flow.

e A description of a non-graphical version of Jack used to provide graphical information to
another process or model.

e Enhancements to the Retina Window function.

e An update on the latest version of SASS, v.2.2.1, which supports the new body geometry and
will be shipped as part of Jack '94 (v.5.8).

* An update on X-SASS (SASS under X-Windows).

9 A discussion of joint center based normalization.

a A brief discussion of the female Viewpoint model To Jack Conversion.

* Details on the new polybody for Jack '94 (v.5.8).

* Progress in the area of human reach trajectory animation using human reach data supplied by
MOCO corporation.

* Enhancements made to the Jack Animation System in the areas of textures and images.

• Plans for incorporating sensor-based navigation into Jack.

* A brief update on XJack.

There are also nine appendices:

* World- Wide Active Jack Sites.

* Preliminary- Documentation for Jack Pre-Release Features: Welton Becket.

* Animating Human Locomotion in Real-time Using Inverse Dynamics. Balance and Comfort
Control: Hyeongseok Ko and Norman I. Badler.

* Blending and Morphing of Dynamic Shapes: Douglas DeCarlo and Dimitri Metaxas.



" ANIMATED CONVIERS.4TION: Rult-bastd Gnrathon of Fa(tul &Lpr .••ion. G&.fur( and
Spoken Intonation for Mulliple Con 'crsational .49 nts: Justine Casseoll. ( atherine Pelachaud.
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and Dimitri Metaxas.

" Animation and Control of Four-Lcgged Anima~s: Evangelos Kokkevis. Dimitri .\etaxas. and
Norm Badler.

" Pipeline Rendering: Intcractive Refractlions. Reflections. and Shadows: Paul J. Diefenbach and
Norman I. Badler.

This research is partially supported by ARO DAAL03-89-C-0031 including 1'.S. Army Research
Laboratory (Aberdeen); U.S. Air Force DEPTH through Hughes Missile Systems F33615-91-C-
0001; Naval Training Systems Center N61339-93-M-0843; Sandia Labs AG-6076: DMSO through
the University of Iowa; NASA KSC NAG10-0122; MOCO, Inc.; NSF IRI91-17110. CISE CDA88-
22719, and Instrumentation and Laboratory Improvement Program #USE-9152503.

2 Jack '94 (v.5.8), Finally!: John Granieri

Jack 5.8 is finally complete! It shipped January 21st, and most everyone should receive updates
soon.

I spent most of the quarter finalizing the code, and updating the User's Guide. Previous reports
have detailed the highlights of this release. The User's Guide expanded by about 100 pages (to over
400 pages now!). Since there is too much new documentation to include here, please refer to the
new Jack User's Guide for the full picture.

There are a couple of things that I put in Jack 5.8 at the last moment and here are short extracts
from the User's Guide on these topics:

2.1 Image Formats and Textures

1 Jack now has an extensible mechanism for handling different image file formats. Internally, Jack

uses the Utah Raster Toolkit RLE format for reading and writing images (reading: for texture maps:
writing: when doing things like write window image). Externally, Jack can read and write several
different image formats, which are defined in the file JACK/jacklibS/jack. imageiilters. dat. This
file defines input and output filter commands to support each image format.

Currently supported formats are:
1 Thanks to Hanns-Oskar Porr for starting this feature.
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,Týype Extension JInput Output

Utah Raster Toolkit rle T es yes
Utah Raster Toolkit (Compressed) .rle.Z T-os y__ s
SGI RGB Format .rgh yes Ve,
SGI RGB Format (("ompressed) .rgl.Z yes yes-
GIF gif yes yes
GIF (Compressed) .gif.Z yes yes
PostScript .ps no yes
PostScript (Compressed) .ps.Z ] o ) es

Figure 1: Supported Image File Formats

For each format supported, there are four lines in the filter file which define the entry:

1. Name of the format.

2. The extension of files in this format.

3. The input command. The input command must, take the input filename as an argument (17(s
represents the filename) and produce a URT rle file on its standard output.

4. The output command. The output command will be fed a URT rHe file on its standard input
and produce an image file of the correct type (%s represents the filename). If either input or
output is not available, this is signaled by placing the special command not.available.

An example entry for compressed GIF files looks like:

GIF (Compressed)
.git.Z
zcat %s I giftorle
rletogif I compress I cat > %s

There are a set of sample textures in the JACK/jacklibS/textures/ directory. An excellent tool
for browsing the texture images is the xv, available from many anonymous ftp sites. 2

2.2 Postures and Posture References

I added features to Jack for saving and restoring posture files which are independent of the instance
of a figure (i.e. you can create posture files for one human, and apply them to any human).

2 xv was also written at the University of Pennsylvania, by John Bradley at the GRASP Laboratory.
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A posture block is declared within a figure block. Its purpose is to capturre a posturre (joint
angles, figure location, root. and constraints and behaviors) for a particular figure. There are two
forms of a posture declaration inside a figure block. The first one is called a posrir f( nfJr(iiu. and
uses the keyword postureref. and looks like:

f;gure human {
postureref ["standing.post"] (10cm) standup;
postureref ["sitting.post"] sitdovn;

}

The above declaration adds two named postures to the figure human. and they are niamed .%andup
and sttdown. The important point to know here is that a postureref declaration will Inot read t lie
posture files (in this case, .post) when the postureref is read. It only adds the named posture (along
with filename and arguments) to the list of postures attached to the figure. This is important, since
the posture definition file (.post file) may contain references to peabody objects that do not vey
exist in the environment. The posture file is read when a Jack command requests the posture to be
instantiated. This also allows postureref declarations to be stored in figure definition files (.fig
files).

The other form of a posture declaration is called a posture instantiatllon and looks just like above,
except postureref is replaced with posture. It would look like:

figure human {
posture ["standing.post"] (10cm) standup;
posture ["sitting.post"] sitdown;

}

The difference here is that when the declaration is read, the posture file is read, and therefore the
posture is instantiated (the figure is moved to the corresponding posture). In the above example.
the figure would be moved to the standup posture, then the sitdown posture.

Posture definition files can be parameterized just like figure files and motion group files. In the
example above, the posture file standing.post takes one parameter, a length measurement. The
file standing. post could look like:

posture (length) {
root = lower-torso.distal;
joint left-shoulder->displacement =

location = trans(length, Ocm, Ocm);
}

A posture file must always start with posture, not postureref. Inside a posture block, you
may have joint, displacements, site locations, constraints, behaviors, root specifications, etc (any
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field or block which may appear in a figure hlock may appear ini a 1),os05lr- block). Note that all
segment/site/joint names are rlathrf, they are not prefixed withi the figure nanm. Ihli. allow,
posture files to be shiared between similarly structured figures (i.e. the hulian).

3 Jack and Virtual Reality: John Granieri

I am working on a posture transition system which creates a posture transition graph. and roplays
the transitions in real time, from recorded sequences of joint angles and figure positions. Thi,
system is used in both the Navy and Army projects to execute posture changes in real-time in their
respective V'R environments.

We have also built some low resolution (about 200 triangles) human figures to he used in visual
simulation applications. We will make them truly --human" (in the Jack sense), so that they may Iw
used as replacements for the standard human figure. This will require some re-writing of the liuman
control code in Jack.

4 The refObject Class: Mike Hollick

4.1 Overview

The refObject class was designed to provide a facility for "linking" an arbitrary object to elements
of the Jack environment. When an object is defined as a subclass of the refObject class, it will be
notified whenever an object it is linked to is deleted. For example, the new rulers in Jack exhibit
this behavior. Each ruler object is attached to two segments. If either segment is deleted, the ruler
is notified and automatically deletes itself. The user does not have to delete the ruler before the
segments, and the ruler code does not need to check the validity of both segments every cycle.

4.2 The Class

A synopsis of the refObject class is:

class refObject {
short magic; // a magic number for validity
int detach.behavior;// flags the desired behavior on detach

public:
short type; // the type, for finding in a list
List *list; // the list I belong to.
List lists; // a list of lists I belong to.
int deleting-flag; // lets detach know

5



// if the object is being deleted

refObject(short t);
virtual -refObject(;
virtual void attach(List *1); II attach to this list
virtual void detach(List *1i0); // detach from 1 (or from list if 1=0)
virtual void attach(List *[D, int); I/ attach to all lists in this array

1/ of lists
void set.detach-behavior(int i) {

detach-behavior=i;}; 1/ set the flag

The constructor requires an argument that identifies the type of subclass. See the example below
for an illustration of this. The remaining functions are used by subclassed objects to inake and break
links to elements of the environment.

" attach(List *) ' this form of the attach method allows the object to be linked to one
Peabody object. The argument should be a pointer to the refObj list in the Peabody structure.

" attach(List * [I, int) => this form allows the object to be linked with any number of
Peabody objects. The first argument is an array of list pointers. Each element of the array
should point to the refObj list of a Peabody object. The second argument is the number of
elements in the array.

" detach(List *1=0) =:, this is used to remove the refObj's association with a Peabody object.
When an argument is provided, it should be a pointer to an object's refObj list. The refObj
will then be deleted from that list only. If no argument is given, the refObj will be deleted
from the lists of all objects it is attached to. This function should be called by the subclass'
destructor (see example below). This will also be called by Jack's deletion routines when an
object the refObj is attached to is deleted. This command will delete the refObj automatically
under certain conditions, as described below:

" set -detach-behavior(int) => this is used to control the behavior of the detach function.
There are two flags that can be passed:

- REFJNEEDS.nNE =>if this behavior is specified, the refObj will be automatically deleted
when it has been detached from all Peabody objects. In other words, it must be attached
to at least one object.

- REF-NEEDSALL =>'when this is specified, the object will be deleted by the detach function
if it is detached from any object. For example, the rulers use this behavior, so they are
deleted automatically if either segment is deleted.

Note that the detach function simply deletes the refObj. Therefore, the destructor must be
designed to handle two cases: one, where the refObj is deleted automatically by detach: and,
where the refObj is deleted by something else. In the former case, the destructor is called
by detach. In the latter case, the destructor must call detach. Although this may seem
complicated, the flag deleting.Ilag simplifies matters and avoids any loops (see the below
example).

6



4.3 Example 1: Rulers

Dynamic rulers are a new facility in Jack that allow distances to be continuously measured. The user
picks a location on each of two segments (the location can be either a site or an arbitrary location).
A red and white ruler is then drawn between these two points. The ruler can be deleted by the user
directly, or it will be deleted when either of the two segments are deleted. Til latter behavior is due
to its definition as a subclass of the refObject class. The rulers were originally written before the
refObject class was implemented, but changing the code to use the refObjects required only minor
additions to the ruler constructor and destructor.

S4.3.1 

Constructor

There are actually two constructors, but for the sake of brevity I will only present one. This one
takes 2 site pointers:

Rule:c::Ruler(Site *sitel, Site *site2) : retObject(REF-RULER)

// assign
segl = sitel->segment;
seg2 = site2->segment;

// get the site locations (offset from segment global)
segment's cpmatrix(off 1 .matrix, (GetSiteLocation(sitel, NULL) )->matrix);

cpmatrix(off2.matrix, (GetSiteLocation(site2,NULL))->matrix);

// bind and go
sf = BindDrawer((IntFunc)dra._ruler, (void *)this);
appendcirclist (krulers ,this);
total.rulers++;

// make the attachiment list array
List *list-list[2);
list.list[O] = ksegl->refObjs;
list.list[l] = kseg2->refObjs;

// set the detach behavior
set.detach-behavior(REFNEEDS-ALL);

attach(list.list,2);

The relevant parts of this function are the creation of the attachment list array, the detach
behavior definition, and the attach call. Each member of the list.list array is simply a pointer
to one of the refObjs circlist. The detach behavior is defined as REF.NEEDS-ILL. This means that
the ruler object will be deleted if either of the segments is deleted. (If REF..NEEDS_0NE had been
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defined, the ruler would not be deleted until both segments had been deleted). Finally. the attach
call passes the list array, along with the number of elements in the array. This attaches thlt- of1ect
to the two segments.

Also. note the refObject(REF.RULER) in the constructor's declaration. This sets a flag that
allows arbitrary refObject members to be identified.

4.3.2 Destructor

The destructor is straightforward:

Ruler: : Ruler(void)

// just zap it
UnBindDrawer(sf);
deletecirclistdata(krulers,this,0,O);
total-rulers--;

I/ detach from all refobj lists (if any)
II flag needs to be set so detacho) knows not to recursively delete
// the object!
deleting-flag = 1;
detacho;

The only thing that needed to be added was the detach call, along with the deleting-flag
assignment. deleting.flag must be set to 1 in the destructor. Since detach will delete the object
if the detach behavior conditions are met, the flag is necessary to notify it that the object is already
in the process of being deleted.

5 Integrating the Reactive Collision Avoidance System into
Jack '94 (v.5.8): Xinmin Zhao

During the last three months, I have been finishing the implementation of the new collision avoidance
system and integrating it into Jack '94 (v.5.8). The new system avoids both self-collisions and
collisions of the human body with environment obstacles. In this version, torso collision avoidance
has been added so that collisions occurring from the pelvis and above, including the head, arms and
hands, can be handled.

The new system does achieve our original goal: better performance. During interactive manip-
ulation of a human figure, Jack can be running over 10 HZ (the average frame rate) with collision
avoidance done automatically (measured on a Silicon Graphics workstation Crimson VGXT). More-
over. when there is no collision, the collision avoidance system causes virtually no overhead. The
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speed of the new system is achieved through a design that tries to minimize the overhead from the
optimization routine. The new implementation also exploits spatial and temporal coherencte to gain
good performance. However, during the execution of motions, the performance of the system may
not be as good because of attempts to stabilize the center of mass in each frame.

6 Path Planning using Laplace Equation: Xinmin Zhao

An interesting way of doing path planning is through simulating fluid flow. Imagine that we put a
water source at the starting position and a sink at the goal position. The path the water follows
"will be a smooth path from starting to goal position. One of the sm-plest flows is called potential
flow, which is governed by the Laplace equation (the 2D form of the equation is given below):

One nice property of potential flow is that starting from any position. the flow will reach the sink
if it is physically possible. In terms of path planning, this property guarantees that a collision-free
path from any starting position can be found if one exists.

Potential flow can be simulated by solving the Laplace equation. One simple approach is using
a finite difference method to get sets of equations and solve the equations using the successive
over-relaxation (SOR) method.

Experimental results show that this method is very good for 2D path planning: multiple non-
trivial paths can be planned in less than a second on a workstation. Therefore, this method can be
used to do on-line path planning in a 2D workplace. The paths shown in the figure are planned in
0.3 second CPU time on a workstation.

While in theory this approach can be extended to higher dimensions, in practice, the 3D problem
proves to be very expensive to solve (from over 10 minutes to hours), and the 4D problem is virtually
impossible to solve. The problem is that this method requires solving very large numbers of equations
(equal to the number of discrete elements). For a 4D application with 40 x 40 x 40 x 40 elements.
there are 40 x 40 x 40 x 40 = 2,560, 000 simultaneous equations to solve, which is too expensive
for today's workstation, so a straightforward extension of this method to higher dimensions is not
practical.

9
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Figure 2: Path planning using the Laplace equation (the figure shows paths from various starting
position to the goal position, which is located at the upper-left corner. The dark areas are obstacles.)
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7 A Non-Graphical Jack: Zhongyang Feng

Jack is sometimes used only to provide information about the graphical environment to another
process that handles the graphical display or that uses Jack's human model information to control
its own human model. In this case. it is not necessary for Jack to provide a graphical display and
therefore, a version of Jack that has no graphical output has been developed.

While this non-graphical Jack is running, it reads commands from the keyboard and writes
the text output and messages (informational messages and error messages) to the standard output.
Although one can input command arguments interactively, commands in the syntax of standard J(1
are preferred. Since it is assumed that all commands are in JCL. some functions such as argulni
prompt and automatic completion have been disabled because they are no longer needed.

By opening communication ports, Jack can also read commands through the network and run as
a server that provides information and computing for external client processes. Without spending
time drawing the windows, Jack performs operations much more quickly.

8 The Implementation of Retina Window: Zhongyang Feng

The command for opening Retina Windows was once disabled due to its poor performance. After a
series of changes to its basic algorithm, it now works correctly.

The old and the current version of the Retina Window differ mainly in the following aspects:

1. The method of projecting points onto a Retina Window has been upgraded to a more accurate
one. For instance, the displacement of a point in the vertical direction should also affect its
horizontal coordinate in the Retina Window, and vice versa. However. the old version didn't
work this way.

2. A new method of projecting the whole geometric environment onto the Retina Window has
been developed in order to ensure the correct outcome. For example, in the old version, the
projections of straight lines were still straight lines in the Retina Window, which in fact is
wrong: and the edges which are partly out of sight are always totally ignored. These problems
"are all fixed in the current version by using this new method.

3. The new version opens a Retina Window for left and right eye separately, which not only shows
the image more clearly, but also enables the use of the figure's own color as its color in Retina
"Window.

4. The figure's own color attributes, rather than the color for the left or right eye in the old
version, are used as its projection's color in the Retina Window. Without this change. the
Retina Window would be inaccurate when there is more than one figure in the environment.

Besides the above, there are some other minor improvements in the current version. For example.
in the old version. a great deal of time is spent doing some computing whose results are ultimately
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rejected (e.g. computing the projections of the human figure's own body parts which won't be shown
in the Retina Window). This has been improved in the new version. Moreover, no more than 10.000
nodes per psurf were permitted in the old version. There is no such limitation now.

9 SASS: Francisco Azuola

The body geometry for the polybody has been redone to improve the quality and accuracy of the
model. New lower and upper limbs, head, eyes. neck, and pelvis have been developed. For now. the
torso was left untouched but it will be updated for a future release.

The latest version of SASS. v.2.2.1, has been adapted to support the newest body geometry and
will be shipped as part of Jack '94 (v.5.8). The connection between SASS and Jack has been tested
and revised to make the interface between the programs a lot smoother.

This new version of SASS includes new features which should make using the database easier.
Namely, the user can now reload information, or even load an entirely new set of data, once the
program is running. Previously, data could be loaded only at start time, making it necessary to
re-execute the program in order to load new data.

For the girth spreadsheet, I have included data for two more percentiles, 20 and 70. along with
the already existing 1, 5, 50, 95, and 99 percentiles. In the future, data for other percentiles will be
added.

The interface between SASS and the geometry, i.e., transformation factors, has been made ex-
ternal to the program. This means that now the user can tune the scaling to his/her own needs.
without having to recompile the program. This is very useful for customizing figure production.

I have improved the error handler of the program to give more explicit information to the user
regarding external data. I have also added some new features to the graphical interface, like a SASS
hourglass for lengthy operations and more informational messages.

Finally, I've updated the user's manual with the new features for this version.

10 X-SASS: Ann Song, Francisco Azuola, Susanna Wei

X-SASS is a system that works hand in hand with SASS to create what is commonly called a
graphical interface under the X environment. It behaves like a spreadsheet and also offers an
interactive database query feature. Fig. 3 shows the main X-SASS screen.

The X-SASS Window has the following components:
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The Group Bar
The .Menu Bar
The Status Bar
The Data Section

e The Group Bar: The Group Bar lists all of the anthroponetric groups and also highliglht.
the current working anthropometric group.

* The Menu Bar: The Menu Bar organizes the most coniinon commnands of the X-SASS
window and it provides a way to start the applications used in X-SASS. Each menu binds 1tk
an icon button connected to a PullDown menu. The PullDown mienu groups several topics
together. Each topic has a single-letter mnemonic indicated by underlining. Thus. you can
start an X-SASS option with the mouse or the keyboard. The six main menus are FileServer.
Checklist, View, Database, Help and Exit Menus.

- FileServer: FileServer is designed primarily to help the user organize files. The following
functions can be performed with FileServer: Scaling Files, Figure Files. Save Sheet. Read
Files.

- CheckList: CheckList displays the current values of the body with entries and icons (See
Fig. 4). You can control those values by simply clicking on them.

- View: View has two options which are By Label and By Icon. These options determine
the way the Menu Bar is displayed.

- DataBase: Database is a separate application in X-SASS. The Database system contains
three main components which are Menu Bar, Status Bar and Queried Data Section (See
Fig. 5). The Menu Bar is on the top of the Database sheet. It has six main menus which
are Query, Project, Select, Extend, Path and Back to X-SASS. The Status Bar displays
the status but it also displays the current query command. The Queried Data Section is
the area where the queried Data is displayed.

o The Status Bar: The Status Bar presents the current status and describes the current
working function briefly. Most Windows applications include a Status Bar. With most. menus.

,* anytime a user is unsure of what the spreadsheet is currently working on, the user can look at
the Status Bar and find the current status. The Status Bar has two main types of information.
the Group Status and the Menu Status.

The Data Section: The Data Section is a spreadsheet that lets the user create and edit
the anthropometric group data. It can be used to produce a new human body - from thin

to heavy, from short to tall. The initial data is displayed on the spreadsheet,. and t he ent ries
of the spreadsheet can be modified. Each entry of the spreadsheet has its initial value and

its default range. When the user types a non-numeric or an out-of-range value, a dialog box

appears asking the user to fix the entry error. Every entry on the spreadsheet is one part of

the human body. The user can click the leftmost column to see the information for the entry.

Scrollbars can be used to scroll the spreadsheets up and down, left and right.
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11 Joint Center Based Normalization: Pei-Hwa Ho

The way body segment normalization was previously done was based purely on thc geoi1,try of
the segment It assumed that each segment does not overlap with neighboring segineini.. tha thle
long axis lies in the center of the segment. and that the geonetry is svyiiietrical in certain wtyýs.
In reality, none of the human body segments satisfy these assumptions. and therefore scaling, and

normalization, should be done with respect to the underlying skelelon of each seginent. One wa% to
approximate this is to use the line joirning the two joint centers as the skeleton and use that as the
reference in normalizing the segment.

A utility was developed so that segment normalization uses the line going through the proximal
and distal sites as the long axis (z) and uses the proximal site as the origin. This will greatly. preserve
the appearance of models that are created from realistic geometries. e.g the Viewpoint niodel.

Geometries that are normalized this way need to be scaled with respect to the same axis as well
and this will be built into the Jack "create human body" command routine. This type of scaling
should only be used for the realistic models, not the standard polyhedron model.

12 Female Viewpoint To Jack Conversion: Pei-Hwa Ho,
Leanne Hwang

We will convert the female model from Viewpoint to Jack format in the coming months. The only
detail that, we have to consider is how to handle the female upper torso so that we can have a
seventeen-segment torso without endangering the integrity of the female chest.

13 New Polybody for Jack '94 (v.5.8): Bond-Jay Ting

This quarter, I devoted my time to creating a new polybody for Jack '94 (v.5.8). The hat and
glasses from the old polybody were eliminated in the new polybody. This reduced the total number
of segments from 71 to 69. The total number of polygons, however, has increased to 2400 due to the
increased level of detail. The changes made for the new polybody are as follows:

" Torso: The seventeen-segment torso for the new polybody has been modified from the old
polybody. The only change is that the new polybody is thicker than the old one.

" Hands and Fingers: Palms and fingers have also been modified from the old polybody. Fin-
ger segments remain cylindrical, while hand segments have been modified to be more human-
like. Also, finger tips were added to the fingers.

" Legs and Arms: Similar to the old polybody, the new polybody starts with a cylindrical
design, but the new polybody is tapered. The segments are no longer symmetric, but more
realistic.
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" Feet and Toes: Unlike the old polybody. the modified feet are designed without shoes on.
The ridge has been moved to the inner edge of the foot. The pitch on the feet has also been
made steeper.

" Head. Neck and Eyes: The head and neck for the new polyhody are new designs. Instead
of modifying the old head. the new polybody uses scanned human head and neck data as a
reference. Compared to 91 polygons, the new head consists of 469 polygons. More detail was
introduced such as eyebrows and ears. In the old polybody eyeballs were virtual segments.
which is why the glasses were needed. In the new polybody. two 90 polygons eyeballs are
added. Each eyeball has a two degree of freedom joint connected to tlhe head segment. This
improvement makes eye motion possible.

14 Human Reach Trajectory Animation: Hanns-Oskar Porr

I continued work on the MOCO corporation research and simulation project. MOCO has supplied
us with a large set of experimental human reach data. This data was created by digitally sampling a
human reaching motion with several Ascension Technology Bird sensors. I implemented the experi-
mental setup in the Jack system, and used the constraint system in Jack to model the sensor data.
A Jack segment (e.g. a forearm) is a "constraint" to the sensor data (position/orientation), meaning
it tries to automatically align itself with the measurement. Since the constraint computations take
a long time, I store the computed posture sets inside the new Jack channel structure as they become
available. That way, once the computation is finished, the movement can be played back in near
real-time on the screen, or put to tape. So far, I have created video tapes of animations for one
test subject under two protocols (around 150 trials), and I am continuing to produce more for other
subjects.

15 Jack Animation System: Hanns-Oskar Porr

I implemented the following new features in the Jack animation system:

* I extended the existing texture map facilities. In particular, I added an option that does
reflection mapping, using the SGI real-time texture mapping features. It takes as input an
image file that looks like a fish-eye view of an environment (many are provided), and reflects
this onto any Jack figure.

* I added arbitrary image file support to the system. Any image file that is supported by the
Utah Raster Toolkit conversion routines (e.g. gif, rgb, ps, etc. ) can now be read into and
written by Jack. This is achieved by using a UNIX pipe inside of the program. Given the file
extension ( e.g. ".gif'), an appropriate filter program as provided by the URT is chosen, and
used in the pipe as a pre-filter before loading the file. The pipe also works for compressed files
of any format.

e I added bitmap font support into Jack. This enables a user message to be shown on the screen
in large screen font. Without this feature, any screen message always appeared blurry and
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unreadable on a video tape. as the font iooked too small and thin. \Vith the new fl'ature. thle
user call now type a large inessage on the screen that is readable on a video tape- as well.

e I reorganized the texture map directory structure. First. I collected all iniapes (Mi various,
formats) that were on the system, and then repackaged them into various sn h-uiit (,
Faces, Environment maps, Textures, Places, etc). Ben Ting and I downloaded various images
from image servers around the nation to expand the collection. These directorle, wert, then
cataloged (hard copied), and inade available to all lab mnembers, to further aid the development
of texture mapped imagery in the Jack system.

16 Sensor-Based Navigation: Barry D. Reich

This quarter I wrote a program which guides all agent across a field and displays the path graphically.
The field is a grid of squares one meter on a side. Each grid square represents a type of terrain such
as grass, water, or mud. each with a different weight. The weight is one for easily navigable terrain.
such as grass, zero for impassable terrain, or somewhere in between otherwise.

The agent and target are placed at arbitrary coordinates in the grid, and the goal is for the agent
to walk to the target location choosing a path with relatively little resistance. The total weight of
each square adjacent to the agent is calculated by multiplying several weights together including
terrain weight. The agent takes a step to an adjacent square with maximal total weight and the
calculation is repeated.

With just a few weights the results are encouraging. I am now implementing this in Jack. A
human agent will use a collection of sensors to navigate through a field, avoid obstacles, avoid enemy
gaze. and arrive at a target location.

17 XJack: Ioi Lam

I have ported most of Jack's functionality to Xjack, a version of Jack that runs on X-Windows
using the TK toolkit. An internal working version of XJack has been used in various Lab research
projects. however, much work still needs to be done in refining the user interface and providing more
intuitive interaction techniques before its release.
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A World-Wide Active Jack Sites

* NASA - Huntsville, Marshall Spac, Flight ('enter. Alabama

* NASA-Ames Research (enter..Moffett Field. California

e Computer Sciences Corporation. San Diego. California

* FMC Corporation, Santa Clara. California

* Micro Analysis and Design Inc.. Boulder. Colorado

• United Technologies Research Center. East Hartford, Connecticut

* University of Delaware, Wilmington, Delaware

* NAWCTSD, Orlando, Florida

* University of Central Florida, Orlando. Florida

e McDonnell-Douglas Space Systems Company, Titusville, Florida

* US Army Infantry School, Fort Benning, Georgia

* Children Design Center, Paia, Hawaii

* Deere & Company, Moline, Illinois

* Caterpillar Inc., Peoria. Illinois

* Iowa State University, Ames, Iowa

e University of Iowa, Iowa City, Iowa

* U.S. Army Research Laboratory, Aberdeen Proving Grounds, Maryland

* National Institute of Standards and Technology, Gaithersburg, Maryland

* MIT Media Lab. Cambridge, Massachusetts

e U.S. Army Natick RD & E Center. Natick, Massachusetts
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"* MOCO, Inc., Scituate. Massachusetts

"* General Dynamics Land Systems. Sterling Heights, Michigan

"* US Army Corps of Engineers. Vicksburg. Michigan

"* General Motors Corporation, Warren, Michigan

"* U.S. ARMY TACOM. Warren. Michigan

"* Martin Mai tta. Moorestown, New Jersey

"* Sandia National Labs. Albuquerque, New Mexico

"* Ohio State University, Columbus, Ohio

"* Wright-Patterson Air Force Base, Dayton, Ohio

"* University of Dayton Research Institute, Dayton, Ohio

"* Anthropology Research Project, Inc., Yellow Springs, Ohio

"* Traces, Inc., Bala Cynwyd, Pennsylvania

"* The University of the Arts, Philadelphia, Pennsylvania

* Texas A&M University, College Station, Texas

"• NASA Johnson Space Center, Houston, Texas

"• Texas Woman's University, Houston, Texas

"• Army Research Institute, Alexandria, Virginia

"* Naval Surface Warfare Center, Dahlgren, Virginia

"* NIOSH, Morgantown, West Virginia

"* Kimberly-Clark Corp., Neenah, Wisconsin

"* NIOSH, Finland
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"* Synergy Integration Ltd., Israel

"* Israeli Ministry of Defense. Israel

"* Japan Tech Services Corp.. Japan

"* Goodwin Marcus Systems Ltd., United Kingdom

"* Ministry of Defence, United Kingdom

* Vickers Defence Systems, United Kingdom

"* British Aerospace Dynamics. United Kingdom
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B Preliminary Documentation for Jack Pre-Release Fea-
tures: Welton Becket

B.1 Introduction

This file contains preliminary documentation for:

1. Path walking: realistic, curved-path walking along a user-defined path.

2. Incremental-reactive walking: automatic walking toward a possibly moving goal object.

3. Dynamic strength windows: visualization of static and dynamic torques compared with
NASA 3D joint-based strength data. Computes static and dynamic torques in real-time for
every joint in the body, including every joint in the spine.

These features are not being released with Jack '94 (v.5.8) because they are in the preliminary
stages of implementation and integration. We are releasing these features early within the UPENN
Computer Graphics Research Lab and, upon request, to sponsors, because they may allow human
simulation and analysis not previously possible. However, please understand that the interfaces are
preliminary (and thus may currently be awkward and also may change dramatically in the future).
and that the commands may not be fully tested in situations and command sequences not described
below.

B.2 Setup

Before you can use any of the features below, you must have the following files available somewhere
in your Jack path:

1. FOOTICON.fig

2. GOALICON.fig

3. GOALICON.pss

4. torqueicon.pss

Make sure that one of the directories listed in your .jack5.install (in your home directory) file
has the full path to all of the above files or the full path of a directory containing the above files.

In addition, you must have the full path to the following files listed in your .jack5.install file:

1. PROTOTYPE.I

2. angle,.knee
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B.3 Path Walking

Path provides one interface to Jack walking- the other is the Incremental-reactive walking de-
scribed below. In path walking, tile user defines a path along which the agent will walk (using the
motion system). The path is defined by placing control points for a path which will be interpolated
automatically (the control points are interpolated using cardinal interpolation). The resulting path
will pass through all the defined control points.

To use path walking, make sure you have a human in the environment, then look at the path
uwalking , menu under the contrib menu. which contains the following commands (each described
below):

"* walk along path

"* walk from file

"* point file to step file

"* turn icons on

"* turn icons off

B.3.1 Walk along path

This command first asks you to select a human figure that is to walk. Next, it asks when the motion
is to start. Note that all path walking is done in the motion system. You specify the start time of
the motion and the duration is determined by the walking algorithm3 Note that through the Jack
lisp-API, you can determine the duration of the walk motion using the lisp command MOTION-DUR.

Next. you specify to goal position and orientation of the walk. A pair of feet appear that you
should place and orient where you want the figure to stand at the end of the walking. The figure
will step exactly into these feet. Note that the walking currently works only in the ground plane
(y = 0.0)4.

Next, you specify the curve along which to walk by placing a number of cones at control points
of the curve. The first cone should be placed in the human's front hemisphere- currently, though
the goal of the walk may be behind the figure's initial position/orientation, the first cone should not
"be placed behind the figure5 . For each cone you wish to place, answer 1 (the default) the to the
question: more markers? no (0) or yes (l). You then place the cone and press ESC to indicate

3 Bug 1: do not attempt to change the length of the walk motion interactively in the motion window. Jack will let
you do this, but the walk motion will not work correctly.

",Bug 2: The walking should work in any plane parallel to the xz plane, though it currently does not. Also. this
command should complain if the goal or the control points do not have the same y coordinate. Currently it just
ignores any deviation from y = 0.0.

5Bug 3: The walking should be generalized to do a 'turn around' if the path calls for going behind the human on
the first step. Currently. Jack will not prevent you from placing the first cone behind the human- the resulting walk
in this case will be disastrous...
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that you are done with the current cone. After all desired cones are placed. select 0 to the more
markers prompt.

Next you are asked if you want the default walk options. anld in most cases you should respond
with yes. If you do select the default options, the walk command ends and the motion appears
on the time-line. You can then execute the motion with the go command". If you don't lake the
default options. the following prompts appear:

1. Initial Stepping Foot, left (0) / right (1):. Indicate whether the walk should begin
with the left or right foot.

2. Swing Left Arm? 0/1. Indicate whether the left arm should swing during the walk. If von
wish to control the left arm while the figure walks, select no to this.

3. Swing Right Arm? 0/1. Same as Right Arm.

4. How much (deg) to bend the torso forward. If you want the torso to bend forward during
the walk, give an angle in degrees to bend.

5. How much (cm) to lower the center of mass. Give a distance in centimeters to lower the
center of mass- this creates a 'crouch walk'.

6. torso control? no(O), swing(1), swing with eyecontact(2). If you wish to control
the upper body during the walk, you should select 0. Selecting 1 will make the torso swing
during the walk, and selecting 2 (the default) will swing the torso and make the figure look
where it's about to step.

Whenever you do a walk, make sure the figure is currently in the position where the walk will
begin. For example, if you want to create two walk motions in the same animation, create the first.
play the animation (with go), then do the second walk from the ending position of the first walk'.

B.3.2 Walk from file

Whenever you execute the walk along path command, it creates the file walk. steps in the current
Jack directory. You can copy this file (so it doesn't get over-written), then use it as a path definition
using the walk from file command - this allows you to describe a path and call it in as a motion
later without having Lo specify the path again. Note that this can be done with the walk along path
command alone by using the JCL code for the executed command8 .

This command will ask for a human figure, then ask for the start time for the motion. It then
asks for a step file, which should be the name of a file generated by the walk along path command.
It then asks if you want the default walk options- the response to this command is the same as for
the walk alorg path command.

6 Bug 4: Note that currently the goal icon (the feet) is not stored correctly by the animation system- when you

play the animation the feet go to the origin. See the turn icons off command
I Bug 5: The walk motion should save the current position of the figure- currently if the figure is not in the same

position at the beginning of the walk as it was when you create the walk. the walk will not work.
6 Previously. the walk along path command could not be invoked using JCL- this was the main reason for providing

the walk .from filf command. We have since fixed the JCL reading. however.
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B.3.3 Point file to step file

This command allows you to generate a step file that can be used by u'alk from fil by supplying a
list of control points off-line rather than interactively. The control points and final direction at the
end of the walk are supplied in a file. Each line in the file should contaim a record of the form:

* xz r-location z-location

Use this to indicate the location in the x.- plane (the ground plane) of the next control point
for the curve. For example the line may be:

xz 100.0 200.0

to place the next control point at (100.0,200). Note that control points are ordered as they
appear in the file.

* dir r-location z-location

Use this to provide a vector that will be the direction of the human at the last control point
(again, a vector in the x: plane). The direction does not have to be a unit vector. For example:

dir 1 -1

will make the human face along the vector (1,0, -1) at the end of the walk. The dir record
can appear anywhere in the point file, but it must be preset. If there is more than one dir
record, only the last is recognized.

Here is an example walk control point file:

xz 0 100
xz 200 300
xz 200 100
dir 1 -1

The command point file to step file first asks for a human. The current location of the human
when you execute the command is used as an implied first control point- so you need not give the
current location of the figure as the first control point in the point file. Then the command asks
for a control point file. Then you are asked for an output file name- the name for the generated
step file. This step file may then be used as input for the walk from file command to create a walk
motion.

B.3.4 Turn icons on/off

The goal icon (the two feet) and the cones defining control points for the most recently defined walk
motion are left on by default. To make them invisible, execute the command turn icons off. The
command turn icons on will turn them back on. The path itself (the line on the ground plane) is
currently not shut off with the turn icons off command- if you do not wish the path to appear
during playback you must currently use the walk from path command, which will not create a path
or any icons for the walk.
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B.4 Incremental, Reactive Walking

The Incremental. Reactive Walking is another interface to the Jack walking. It attempts to inake
the figure walk to a goal object or location without requiring a path. This ap~proach makes decisions
about where the human should step at the end of the previous step. it does not compute tie path ini
advance. Because of this, the target can be moving (interactively). and the human will keep walking
until it reaches the goal. The reactive walking can be accessed through the lisp command WALKTO.
with the following documentation (available on-line from the lisp prompt with (help 'walkto):

WALKTO Cf unct'ion-doc]
Args: (human where &optional threshold)

Human should either be a pointer to a human figure, the name of a human
figure as a string, or the symbol $ for user input. If 'where'
is a 3-vector the human will walk to that location, if it's a
figure pointer or a string indicating a figure, the human will walk
toward the base transform of the figure. Walking stops when
within the threshold distance (which should be in meters). This
could be set to the target object's radius as:

(let ((cubefig (figure-find "cube")))
(walkto "humanS" cubefig (figure-xzradius cubefig)))

Returns an attract behavior.

This command walks directly toward the target object or location, so it is not possible to insure
that it will walk to a particular side of the goal. To accomplish this, use two WALKTO commands, one
to a location just infront of the goal on the desired side of the object (about 2 meters away from the
object), then another to go toward the object.

This command alone will also not avoid obstacles. Obstacle avoidance can be achieved (with
certain limitations) with the lisp command AVOID:

AVOID [function-doc]
Args: (human objtype fkey (strength 8) (fov (/ pi 2.0)) (dist 1.5))

Human should be a pointer to a human, the name of a human as a string,
or $ to choose interactively.

Objtype should be a string that is the
type of object to avoid (any figure whose name begins with objtype will
be avoided, ex: "cube" avoids cube, cubeO, cubel, etc...).

Strength is a relative strength factor for the avoidance.

Fov is the field of view of the avoid sensor in radians.

Dist is the distance to avoid and is given in meters.
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Ex: (avoid "bodybuilder" "ccube" :strength 5.0 :dist 2.0)

An AVOID command should be issued for each type of object to avoid. Note, however. that you
cannot avoid the object you are trying to walk to. and you cannot issue an AVOID for objecl., that
are too close to the goal. Getting AVOID to work correctly when, objects to avoid art near the goal
will require testing different values for the dist and strength parameters.

AVOID is also computed incrementally, so obstacles can be moving. AVOID can also be used without
the WALK-TO command- if used alone it will cause the human to walk away from approaching object,
that come within the specified threshold.

NOTE: One side-effect of the incremental, reactive nature of this command is that the patli

taken by the human figure may be very different on different trials depending on the current con-
figuration of objects. If you want the figure to always take the same path. use the tralk alon9 path
command.

B.5 Dynamic Strength

The create dynamic strength window command creates a window that will monitor dynamic torques
and available strength for a joint-chain in a human figure. In real time, the window will show:

"* Current static torque for each degree of freedom

"" Current dynamic torque for each degree of freedom (while in the motion system only).

" Current available torque (strength) in the positive direction.

"* Current available torque (strength) in the negative direction.

Available torque is computed using NASA Strength9 , which is a function of the current joint
angle and the current angular velocity for the joint. Once a strength window is created it will
continuously display the torque and strength values during interaction and during execution of an
animation"0 . The current static torque for any joint in the figure (including the spine) can be found
through the Jack lisp-API with the lisp function JOIIT-TORQUE. Current available strength can be
found with the lisp function JOINT-STRENGTY (there is currently no way to get the dynamic torque-
this primitive has not been implemented yet).

The commands relating to the dynamic strength are available through the dynamic .,;rcngth
menu within the contrib menu. It contains the following commands (described below):

1. create dynamic strength window

2. dynamics go

'Data courtesy of Abhilash K. Pandya of NASA Johnson Space Center
1°Bug 6: There is currently no way to remove a strength window once created.
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3. attach load

4. unattach load

5. set load mass

B.5.1 Create dynamic strength window

To create a strength window, first make sure a human figure is available in the environninlt. theni
execute the command creatf dynamic strength windo'w. It will ask you to pick a hunian figurc (if
there is more than one figure). Then it will ask you for a joint group- the default is to define aln
arbitrary sub-chain in the figure. but if you intend to use the NASA strength data (as opposed to
just creating a static/dynamic torque window), you must use only the right or left leg or arm. At
the what kind of joint group prompt, you have the following options:

joint chain: define an arbitrary joint chain.

single joint: just one joint.

right arm: just the joints in the right arm for which there is strength data.

left arm: just the joints in the left arm for which there is strength data.

right leg: just the joints in the right leg for which there is strength data.

left leg: just the joints in the left leg for which there is strength data.

Then you are asked if you want to show torque arrows. Torque arrows appear on the Jack
figure at each joint in the selected joint chain, and their lengths represent torque magnitudes. The
default is not to show torque arrows.

Then you are asked for a comparison type, for which there are three options:

dynamics and strength: Show dynamic torque and available strength (dynamic torque becomes
static torque outside of the motion system).

dynamics and statics: Show dynamic and static torque, but no strength information. This should
be used for joints that do not have strength information, such as the back or the neck.

dynamics. statics, and strength: Show dynamic and static torque. and available strength in the
positive and negative directions. This should only be used with a joint group type of left arm.
right arm, left leg, or right leg.

The default is dynamics. statics. and strength.

The strength window is then created in the upper-left corner of the screen, and can be moved
to wherever is convenient. The window will have a column for each degree of freedom in the joint
chain. Within each column you see torques shown in m'x'K.
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e positive available torque (strength) as a light-purple bar abo%, 0.0

* negative available torque as dark-purple bar below 0.0

* current static torque shown in green overlaid on the available strengp h (in Iili' approl'riatc

direction, positive or negative).

9 current dynamic torque show in blue. next to the static torque.

e exceeded available torque is shown in red- the blue or green bars denoting static or

dynamic torque turn red if they exceed available strength.

Note that when you first create a window:

"• If there are no loads on the chain, torques will be very small (especially for the arms), since thie

torques arise only from the masses of the segments of the body. (See the attach load command
below).

"* Outside of the motion system, dynamic torque is the same as static torque (see the dynamics
go command below).

Since the strength window operates in the background while Jack runs, you can manipulate the

arm and see the positive and negative strength and the current static torque change"l

On the figure. each segment involved in the selected joint chain will be highlighted to indicate
percent of available torque consumed- each segment is colored from white to blue (at each joint) as

current over available torque goes from 0 to 1. If current torque exceeds available torque the color

turns red.

B.5.2 Dynamics go

Dynamic torques are computed only in the motion system- you must create motions on the timelille

then execute the animation in order for the inverse dynamics to have a dependable sense of time for

computing velocities and accelerations. Create motions for the figure as usual (dynamic torque even

works during walk along path motions), but instead of using the go command to run the animation.

use the dynamics go command in dynamic strength menu within the contrib menu. The dynamics

"go command resets the dynamics state (clears initial velocities) and makes sure attached loads are

stored correctly (makes sure their animation channels are initialized correctly). Note that in the

future it will not be necessary to have a different go command.

11 Bug 7: There is currently a bug where input focus may not be set correctly after a dynamic strength window is

created. If this happens (you cannot select anything in Jack after you've created a strength window), click somewhere

outside Jack- get the root menu- then go back to selecting in Jack.

29



B.5.3 Attach/Unattach Load

In order to have an attached figure on the human figure considered in torque computation. use tlhe
attach load command iii the dynamic strength menu. It attaches a figure to be used as a load to a site
on the body (as attach figurt does). and includes the figure's mass in the torque contputationi1:' 3 14 .

Use unattach load to remove a load- it takes the figure's mass out of torque computation and
resets the figures root so it is no longer affixed to the attached site.

B.5.4 Set load mass

For a figure that is not attached to a human you can use the sO .ment a.ashs command to change
the mass of a segment. However, for a figure that has been att:u iied as a load using attach load.
you must use sdt load mass to change the mass. Note that the default units for the entered mtass is
grams, but you can use other units by indicated the units explicitly (like 10kg or 101b). Use this
command to see sensitivity of the torques to the load.

"2 Bug 8: Currently, the dynamics go command sets channels for attached figures correctly but may disturb the
chanmel for the human figure's root- in particular you may notice that in some situations the human's feet will slide
together...

1
3Bug 9: Currently. you cannot attach more than one load to a particular site- this is an easy bug to fix. if it is a

problem for anyone, let us know
14 rBug 9: Currently. the mass for an attached figure is counted twice in balance computation. once for the attached

figure s mass and once for the load on the site where it's attached- torques are computed correctly but the balance
behavior will exaggerate the weight of the figure. Note that during walking balance is not computed so this is not a
problem.
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Animating Human Locomotion in Real-time Using Inverse
Dynamics, Balance and Comfort Control

Hyeongseok Ko, Norman 1. Badler
Department of Computer and Information Science
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200 South 33rd Street, Philadelphia. PA 19104-6389

Abstract

Human locomotion is animated with an efficient technique that performs balance and comfort
control based on inverse dynamics and strength data. Loads or 3D external forces can be applied
to any body point. Inverse dynamics using the Newton-Euler method is applied to a 97 DOF
human model to compute the joint forces and torques in real-time. Balance is maintained by
rotating or translating the pelvis and torso. The required torque at each joint is kept below the
available torque based on actual human strength measurements. This comfort control adjusts the
knee angle or the figure base parameters such as the step length and foot angle. The combination
of the balance and comfort controls insures that dynamically sound walking motion is created in
each frame. Several visualization techniques are applied to validate and display the result of the
dynamics computation, such as the degree of imbalance, the ground reaction force on the foot
sole, and the required vs. available joint torques. The algorithm also encompasses any walking
gait, any figure scale, and any motion path.



1 Introduction

Locomotion is a major component of human activity. NMany attempts using physics and dynam-
ics have tried to reveal the principles of the process [15]. Such efforts have bee:i continued in
both computer graphics and robotics (Section 2). But many problems remain unsolved. even in
characterizing the simplest case: linear, forward, rhythmic walking.

Since all mechanical linkage systems are subject to forces and the laws of physics, it is seductive

to attack human motion problems with dynamics computations. Using forward dynamics. specified
forces and torques allow computation of the resulting motion. This has been shown useful in
predicting the motion of non-living objects [16, 42, 2. 14. 4. 29]. For example, starting from the
initial state, one can simulate a swinging chain by just integrating the effect of gravity or other
forces acting on the system.

Unfortunately, the theory is less successful in animating the movements of "self actuated"
systems (living creatures), because the major force components - the internal muscular forces and
torques - are not known a priori over time, and so forward dynamics cannot be used. There is no
known physical law that predicts how the human body will walk (normally) nor how that walk will
change if an external force acts on the model. Accordingly, it is not easy to guess the joint torque

patterns that will drive the model to take a step. Even if it takes a step, the result is unlikely to
resemble a human walking pattern [32, 37].

The alternative to the apparently intractable problem of specifying the joint torque patterns
in advance is to use inverse dynamics in an analysis to compute the torques and forces that are
required for the given motion. For example, the analysis can show that the motion induces excessive
torque, the system is out of balance at a certain point, or the step length is too great. In this paper
we present a method using the inverse dynamics computation to make the resulting walking motion
dynamically balanced and the joint torques maintained within a moderate range imposed by human
strength limits. This is a correction or prediction of a motion based on the inverse dynamics analysis

above. Conventionally (e.g. DADS, ADAMS) the analysis and correction phases are temporally
disjoint as they are designed for mechanical linkages in non-self actuated systems. First the analysis
(e.g. obtaining the joint torques) may be performed for the given motion, and then the required
correction (e.g. reducing the angular velocity) may be computed. Once it corrects the motion,
however, the result of-the analysis is not correct any more except for the very first part. The
analysis should be performed again to check the dynamic soundness of the new motion. This
may require many iterations to stabilize. To avoid the problem, we have built a real-time inverse
dynamics package and real-time motion corrector. These are used in the system SPEEDY (Single

PhasE DYnamic motion generator) described here: the analyzer and corrector are called alternately

"* for each frame to generate dynamically sound motion in real-time.

2 Related Work

Bruderline and Calvert [8] used a kinematic parametrization of walking motion to obtain a variety of
interactively specified. personalized, real-time human locomotion patterns. Boulic et al. [5, 6], and
Ko and Badler [3, 21, 20] attempted kinematic generalization of empirical walking data to generate
locomotion along a curved path and intermittent non-rhythmic stepping in any direction (forward,
backward. lateral, clockwise and counter-clockwise). Their kinematic generation, however, does not
handle the important case of a load or a force attached to the body.

In robotics, Vukobratovik [40] simulated other parts of the body when leg motion is prescribed
for level walking and stair climbing. Kajita et al. [18]. Miura [30]. and Furusho [17] built actual
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Figure 1: Overview of the Locomotion Control

biped walking robots, but walking stability was not easy to achieve. Raibert [35] built a one-legged
hopping robot and controlled it to generate a stable hopping motion.

Witkin and Kass [43] used spacetime constraints to produce realistic motion of a simple ar-
ticulated model of a lamp. The result conformed to traditional animation principles [23] such as
anticipation, squash-and-stretch, follow through, and timing. For biped running, Girard [13] com-
puted the impulses at each liftoff that drive the center of mass along the given path. Banking,
which is a function of the velocity and curvature of running, was added for dynamic stability.
McKenna and Zeltzer [28] considered the problem of dynamic control and multi-leg coordination in
simulating a six-legged figure. Stewart and Cremer used a dynamics simulator Newton, to produce
the animation of biped climbing and descending [36]. Bruderlin and Calvert used a combination of
kinematic considerations and dynamic motion control for goal-directed animation of human walk-
ing [7]. Van de Panne [38] used control theory to simulate motions that entail turning, such as
skiing and biking. Vasilonikolidakis and Clapworthy [391 performed inverse Lagrangian dynamics
on articulated models but no animations have been noted.

3 Overview

In the SPEEDY system, human locomotion is controlled so that balance is maintained and joint
stress is kept within the available torque given by empirical strength data. The latter can be used
to simulate comfortable walking or walking under fatigue, by using a scaled set of available torques.
Figure I gives an overview of the SPEEDY system, showing how a kinematic locomotion generator
KLOG (Kinematic LOcomotion Generator) is used to generate walking motions which are then
analyzed and dynamically modified to meet balance and stress constraints.

Inverse dynamics control requires an underlying motion 0 0 , and some mechanism to modify it
over time. We use the normal gait pattern with no load for 0 0. The modification is done through
the control parameters AO predicted through inverse dynamics. Conceptually it can be written
into the equation:

0(t + At) = Oo(t) + AO(t). (1)

At each frame, real-time inverse dynamics provides balance information and exerted force and

3



11 Micro Parameters Meta Parameters

Balance Control pelvis lateral step width

tpelvis

Ftorso

Comfort Control t3evis step length
foot angle

Other Purpose ielvis

rpelvis

rPelvis

rtorso

Table 1: The Classification of Control Parameters

torque at every joint in the model. The balance control unit computes the control parameters AO( t)
that should br added to the normal gait to retain balance. The comfort control unit compares the
currently exerted joint torque with the available torque, and if it finds a strength" violation, it
updates some parts -f A4(t), so that the exerted torque may be reduced. If the update should
be done on the movement of the figure base (foot), it is delayed until the beginning of the next
step (dotted arrow in Figure 1), and affects KLOG in generating the next step. The updated pose
O(t + At) is used to kinematically position the body for the graphics display.

4 Kinematic Locomotion Generation: KLOG

For the walking animation, biomechanical data from straight, level, forward steps is generalized
to the motion of an arbitrary anthropometrically-scaled human figure. The KLOG generalization,
which produces realistic locomotion animation in real-time, can take steps along any curved path,
including intermittent non-rhythmic steps in any direction or turning toward any orientation. A
walk can be produced simply by specifying the goal location, a path, or a walk direction. Without
a path, a linear path is assumed.

Torso flexion and pelvic rotation/translation have been parameterized to generate different
styles of walking. The torso can be flexed or twisted in any direction rhythmically. For the pelvis,
the position as well as the orientation relative to normal walking cap be controlled over the gait
cycle. Combining both torso flexion and pelvic rotation/translation we can produce minor stylistic
or major changes in walking.

Default values are provided if desired in setting the above parameters. Thus the user per-
ceives KLOG as a high-level, goal-oriented locomotion system. The parameters are also modifiable
through user specification or program control. Some of those parameters (control parameters) are
used for balance and comfort control.

The control parameters are categorized into two sets: micro parameters and meta parameters
(Table 1). Micro parameters ji are related to pelvis and torso motion. They specify the relative
pelvis and torso rotation and/or translation compared with the normal gait. The pelvis has six
degrees of freedom: three for translation (ipelvia) and three for the rotation (Fp~t1 i,). The torso can
bend and twist in 'any direction, represented by a 3-vector rtorao. Thus

ii=(ipeivia, 9 pelvts i OtBos). (2)
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Our conventions associate x,y, and z directions with forward, lateral (right), and down. For exam-
ple, with ipelvis - (-10,0, 10), the hip is both lowered and displaced backwards by 10 cm. If we
further set rtorjo = (0, 30, 0), the torso will be bent forward by 30 degrees, and the overall motion
will look like a crouched walk. Note that the balance control will adjust the gait as necessary for
these torso and pelvis configurations.

Meta parameters are related to the motion of the figure base: step length, foot angle, and
lateral step width relative to the normal gait. In Figure 1, the dotted arrow shows control of meta
parameters, which are modified at the end of each step, to generate the next kinematic step.

As summarized in Table 1, balance control deals mostly with the micro parameters except for
the lateral step width, and comfort control deals mostly with the meta parameters except t~e.vis.

The micro parameters are updated every At, and the meta parameters are updated at the end of
every walking step.

5 Real-time Inverse Dynamics

SPEEDY performs dynamic force and torque analysis at the joints of the human body model.
Denavit-Hartenberg notation [12] and Newton-Euler dynamics (recursive method) [26, 11] - stan-
dard techniques in robotics - are applied. Loads or general 3D forces can be attached to the body
segments. We have extra work to do to solve the closed loop problem in the lower limbs.

5.1 Dynamic Model

Owing to the efforts of J. Denavit, R. S. Hartenberg (12], and Richard P. Paul (34], a kinematic

notational convention, DH-notation, has been established and widely accepted in robotics. Once
a linked system is represented in DH-notation, its kinematics is computable in a systematic way.
DH-notation is designed for a system with single DOF joints.

We model a human body as several rigid links Li(i = 1,..., s) connected by joints J1. Multiple
DOF joints are decomposed into several single DOF joints in our model. For example, the hip joint
is formed by cascading three revolute joints which are mutually perpendicular at the home position
(standing straight up). Thus some of the Li are null links with zero mass and length.

The three graphic symbols (adapted from Yoshikawa's book [44]) in Figure 2 are used to facilitate
drawing the joints. (C) is for a pivot joint in which the links and rotation axis z are parallel. (A)
and (B) represent the same type of bending joint except for a difference in view: (A) is used when
the rotation axis is in left, right, up, or down in the current view; (B) is used when it is either in
the front or back.

Figure 3 shows one possible assignment of coordinates in DH-convention at each joint of a human
body model. The torso is modeled by seventeen vertebral discs along the spine [31]. Rotation is
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permitted only around z axes. The dotted lines in the figure represent non-null links. The dotted
boxes in the lower limbs show the displaced coordinates due to DH-convention. In the torso, the
dotted boxes represent the same pattern as in the three single DOF joint group at the waist.

5.2 Computation Method: Newton-Euler Method

The problem of computing the joint torque is well defined, and systematic and efficient methods
exist for serial link cases. Between the two popular formulations (Newton-Euler and Lagrangian), we
adapted Newton-Euler dynamics; the Newton-Euler computation costs O(n) whereas Lagrangian
dynamics costs 0(n 4 ) without any minimization (where n is the number of DOFs in the system).
The complexity of Lagrangian dynamics can be reduced to linear time, but the coefficients are still
larger than those of the Newton-Euler method. I

The complexity of the algorithm becomes an important factor when the model has many degrees
of freedom. We have simulated several chains using DADS [1]. The simulation of a one or two link
chain (3-6 DOFs) could be done in real-time. It took, however, 48 hours on Silicon Graphics Iris
Indigo workstation to generate the animation of 20 second swing of a six link chain (18 DOFs). It
would surely take more time for a human body model with 97 DOFs. Linearity of the algorithm is
the minimum requirement for real-time dynamics computation of such a complex model.

The Newton-Euler method works as follows: at each time t, it computes the positional and
angular acceleration of every link propagating from the base of the figure to the end-effectors
(outward iteration). During the inward iteration (from the end-effectors to the base), the force and
torque at the previous joint axe propagated for the computation at the current joint. The mass and
inertia of each link is considered during this phase of the computation. The mathematical details
of the method are summarized in Appendix A.

5.3 Closed Loop Problem

We have a closed loop (in the mechanism sense) during the human figure's double stance phase:
the lower limbs form a loop with the supporting plane. The difficulty in handling closed loops
comes from indeterminacy. For example, if an object is held with both hands, inverse dynamics
cannot determine the.joint force and torque along an arm from the given motion alone. There can
exist some counteracting forces, which are not detectable in the kinematic profile of the motion
itself. This is not caused by our selection of the dynamic computation methodology; it is a generic
property of the problem itself. Linear programming [27] or Moore-Penrose generalized inverse
solution [19] can be applied to resolve the redundancy in a closed loop. Kumar [22], Waldron [41],
and Lin [25] studied closed loop problems in cases such as multi-legged vehicles and multi-fingered
grippers.

For biped locomotion, we adopted a simple approximate solution. In propagating the force and
torque from the pelvis to the two thighs during the inward (Newton-Euler method) iteration, the
force is distributed according to the percentage of body support on each leg. If a% of the upper
body weight is supported by the left leg and b% is supported by the right leg (this can be judged by
computing the center of mass and looking at its projection within in the figure's support polygon),
the left hip gets a% of the force and torque from the pelvis and the right hip gets b%. The details
are included in Appendix B.

'The Lagrangian (Vasilonikolidakis and Clapworthy's method) takes 456n - 250 multiplications and 304n - 220
additions [39] after elaborate minimization, whereas the Newton-Euler method (our approach) in its original form
takes 126n - 99 multiplications and 106n - 92 additions [11].
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During locomotion, the dynamic computation should switch back and forth, from non-loop to
loop conditions, as the loop opens or closes. Accordingly, there are three different states. LORS
(Left foot Off the ground and Right leg Supporting), LSRO, and LSRS.

The closed loop problem solution may differ slightly from what is actually happening, because
in practice the assumptions that were made in formulating the solution are not true during the
entire duration of the motion. During locomotion, balance is relatively stable in the double stance
phase. Moreover, the weight and torque from the upper body is distributed between the two legs
in this phase. Thus each leg gets less stress than in a single support phase. Therefore a small
discrepancy between the computation and an actual walk does not cause a drastic change in the
balance and comfort control.

5.4 Approximation for Real-time Computation

The acceleration computation at t needs the states at t - ZAt, f, and t + -At. But in real-time
computing, the state at t + At is not available. As discussed in Section 1, to intermix the analysis
with the motion correction, the computation cannot be delayed even by At. Thus we use instead
the states at t - 2At, t - At, and t for the approximate acceleration. Even though this may
create considerable differences during sharp motion changes, it appears to be quite tolerable for
locomotion simulation.

5.5 Visualizations

The loading force is portrayed by a cube which swells or shrinks according to the mass (Slides A
and B). Any external force is shown by a thick arrow with a blue head, which also grows or shrinks
in proportion to the magnitude (Slide B). Interactive changes to either force are allowed during the
motion, as demonstrated in the accompanying animation.

Three kinds of data graphs can be displayed: balance, reaction force (Slide A), and available
vs. required torque (Slide B). The two windows at the bottom corners of Slide A are the balance
displays: the right one is for the left leg and the left one is for the right leg. 2 The red bars show
the extent of imbalance along the x, V, and z axes (subject to the conventions given in Section 3).
The first bar indicates lateral imbalance, and the second indicates longitudinal imbalance. The
third bar indicates the amount of twisting reaction torque from the ground to the foot sole.

The two middle windows in Slide A are the reaction force graphs. The light blue bar shows the
reaction forces from the ground in the x, y, and z directions. As expected, most of the reaction
force is in the z direction. Non-zero values in x or y are the reaction forces from the ground that
prevent sliding, and cannot be greater than the maximum friction force.

Joints on the body display are colored (Slide B) so that the torques can be portrayed: as the
torque increases, the color changes from white to blue. If the torque exceeds the strength limit, the
color is set to red. The thin arrow (with red head) coming out of the joint indicates the magnitude
of the torque.

The two bar graphs in Slide B are the available vs. required torque panels of the right and left
legs. A bar corresponds to a DOF. There are seven DOFs in a panel: three for the hip, one for the
knee, three for the ankle. The purple bar shows the available torque (strength). Each DOF can
rotate in two directions, positive and negative. The strengths in these two directions are different,and are called the positive and negative strengths, respectively. The light purple bar shows the

positive strength, and the dark purple bar shows the negative strength. The blue bar shows the
2 The apparent left-right reversal is because we like to view the figure walking towards us; thus its left is our right.

The window thus appears in a visually compatible position on the screen.
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dynamic required torque for the motion. The green bar shows the static torque considering each
frame as a static case. The blue (dynamic torque) and green (static torque) bars can grow or
shrink within the purple bar (strength). If the blue or green bar exceeds the purple bar. that part
is colored red, indicating a strength violation. At the same time. tfv joint of the human figure on
the display turns red. The available vs. required torque panels can be created for other parts of
the body.

6 Balance Control

6.1 The Zero Moment Point and Balance

Static balance can be achieved by keeping the projection of the center of mass within the figure's
support polygon, even if only one leg provides support. In locomotion, however, we need to consider
dynamic balance because the inertia effect is not negligible.

Consider a single support phase. Even though the body seems to be supported by tile whole
foot, we can find a point on the sole at which the moment is zero. This idea comes from the analogy
of walking "on tiptoes". There cannot be any exerted torque at the toe. Similarly during walking
there is a point called ZMP (zero moment point) [40] where the exerted torque should be zero.
ZMP is not a fixed point but it translates from the heel to the tip of the toe during support. We
create a fake joint at ZMP that connects the foot to the world.

6.2 Balance Vector and Balance Control

Normally the moment at ZMP should stay zero all the time. If the result of inverse dynamics
indicates a non-zero value, it means such a torque should have been exerted for the motion. We
interpret it as the measure of imbalance at that moment. We call the torque at the ZMP the
balance vector b. Thus, for example, if the balance vector is heading forward (Figure 4), a left-
to-right torque (by the right hand rule) should have been exerted to prevent lateral right-to-left
collapse. Therefore, moving the pelvis to the perpendicular direction (right side) of b, and bending
the torso left-to-right will help to keep the balance. If we let b&-L be the vector obtained by rotating
b by 90 degrees clockwise, the pelvis displacement is given by

APELVIS = b", (3)

and the torso bending is given by
ATORSO = 0b9. (4)

Determining the value of a and / is not an easy problem. If we use values that are too large,
the adjustment will overshoot the correct balance, and if too small, the adjustment will be too slow
to achieve balance in time. Also, the ratio between them must be determined. These issues will be
addressed in Section 7.

During the double stance phase, the balance vector is approximated by the weighted average of
the balance vectors at the two feet according to the relative position of the center of mass projection.

6.3 Lateral Swaying

Balancing creates lateral swaying. The swaying amplitude increases as the load gets heavier, the
step gets slower, or the lateral width of the step gets wider. Swaying causes energy consumption
(as kinetic energy). It can be reduced by having laterally narrower steps. Thus after each step, if
the step caused too much swaying, the lateral step width is reduced by a certain amount. As the
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Figure 4: The Balance Vector

load gets heavier, we use a narrower lateral step width. We can even observe a negative lateral step
width in real human walks when an excessive load is carried.

6.4 Compensation along the Spine

We use 17 segment torso model. There axe 17 fiat discs connected along the spine. This skeletal
model creates a torque at the waist to the forward direction. A more complex abdominal strength
model [10, 9] may solve the problem, but it would require more complex computations. Instead,
we just added a counteracting torque backwards to compensate.

7 Comfort Control

7.1 Strength Data

* Obviously there is a limit to the torque that can be exerted at a joint. For each rotation axis, we
have two limits: one for extension and the other for flexion. That is, the body torque that tries
to win the external flexional torque is called extensional torque and have a negative value. The
flezional torque is similarly defined and has a positive value. Thus the torque at each joint is limited
to the extreme values of the extensional and flexional torques. These upper and the lower bounds
are determined from strength data.

Pandya et. al. [33]. collected strength data of several human subjects. Strength is charac-
teristic of each individual; moreover, it depends on joint angles and their angular velocity. It is
approximated by a second degree polynomial:

y = fo(0) + f (0)@ + f 2(O)e2  (5)

where 0 is the joint angle, and fo, fl, and f2 are the functions of 9.
Lee et al. [24] proposed an animation technique that considers comfort at the joint during an

end-effector motion. The end-effector proceeds for At along a suggested direction (e.g. straight
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path to the goal) unless it causes a strength violation. If that occurs, a cone of possible directions
is computed and the original direction is projected within the cone. For example, if the object in
a lifting task is heavy, the hand trajectory is altered to move it closer to the body to reduce the
required torque. Since locomotion, however, moves the figure base as well as the end-effectors, a
more complex strategy is required.

7.2 Comfort Control

If the system is balanced on a point, the overall moment around that point is zero by the definition
of dynamic balance. For example, if a knapsack is attached at the back, the upper body alone can
achieve a balance by bending the torso forward an appropriate amount (Figure 5 A). In this case
the torque at the waist is zero, and the torques at the joints along the lower limbs will be smaller
than in the case where the upper body balance is not at the waist (Figure 5 B). This observation
leads us to balance by torso flexion only and suggests a relatively large value for /. But too much
torso bending can lead to an excessive instantaneous torque at the waist at the moment of heel
strike.

The imbalance at the waist can be corrected by translating the pelvis (Figure 5 B). In this case
the exerted torque at the waist will not be zero. Moreover, excessive pelvis translation can lead to
a problem in locomotion. For instance, if the pelvis is translated excessively to the right, the left
leg may be too short for support during the right step. The problem is fixed by having a laterally
narrower step, and/or translating the pelvis back to the left with more torso flexion.

We used a = 0.02 and 6 = 0.018 for the accompanying real-time animation. Note that the
values are not compatible by themselves: one is positional (cm) and the other is angular (degrees).
The pelvis translation was limited to 5cm, 10cm, and 2cm in x, y, and z directions, respectively.
Thus if there is excessive external force in the lateral direction, the pelvis is displaced by 10cm,
and the rest of the balance is achieved by torso bending.

Comfort control manages the step length, foot angle, and knee angle parameters. A shorter
step together with a smaller foot angle variation induces less torque at the hip, thus less torque at
the other joints along the lower limbs. A smaller knee angle will help to reduce the torque at the
knee.

After each step, if any strength violation is detected, the step length and foot angle are reduced
by a certain amount. The knee angle is indirectly controlled through the pelvis height tlpelvi. Thus
the pelvis is raised a certain amount during the stance phase, creating a more or less stiff walking
pattern. In the accompanying animation, we can observe the decrease of the step length, foot angle,
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and knee angle until the problem (red colored joint) disappears.

8 Discussion

An excessive pelvis translation requires a pelvis rotation, to compensate for the fixed length of
the leg. For example, if the pelvis is displaced laterally, the pelvis needs a rotation around the x
direction. Thus the other purpose parameters in Table 1 are used to set the proper pelvis orientation
together with the balance control parameters.

In the dynamic simulation, a variable load and/or a 3D force can be attached at any point of
the body. If a load is attached, the mass and inertia of the attached link is recomputed. As shown
in the appendix, we Pssume the external force is acting on the center of mass. If not, we translate
it to the COM by adding an extra moment on the link.

Our decision in the comfort control is based on the comparison between the required and the
available torques. The joint forces should be also considered for a dynamically safe motion. The
joint force is defined to be the force exerted at the joint from the above link. In a situation that
involves a great impact, the joint force becomes more important. When landing from a high jump,
a stiff straight legs induce zero torques but huge forces at the moment of the impact. The joint
impact force, however, is partly reflected in the joint torques during locomotion, as summarized in
Appendix A: there is a cross product term which happens to be zero in a stiff leg landing. Normally
impact forces are not great enough to cause problems in locomotion. Our decisions oa strength
violation may be refined later if we acquire data on impact endurance.

SPEEDY is implemented on a Silicon Graphics Iris Crimson workstation. It draws 20 frames
for the curved path walking alone. With the balance and comfort control, it draws 10 frames per
second. The speed is reduced by half if about 2000 polygon faces should be shaded.

The SPEEDY system for human locomotion animation implements an efficient real-time tech-
nique using balance and comfort control, inverse dynamics, and strength data. It modifies the walk
in real-time when a load or a 3D external force is applied. Several visualization techniques display
the result of the dynamics computation.

The accompanying video has three parts. The first part shows the gait changes due to the
balance control. The second part shows the result of the comfort control. The final part is a short
movie in which a person carries a dog in a strong wind (Slide C). The inflexible chain was added
to show the direction and magnitude of the wind: the chain direction shows the direction away
from the wind, and the (world coordinate) chain angle shows the magnitude of the wind. The dog's

* motion does not affect the chain. The piece demonstrates realistic human locomotion and postural
adjustment in the presence of significant loads and changing external force.
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Appendices

A Newton-Euler Method

Some notations must be introduced. Unless otherwise mentioned, all the vectors and matrices are
resolved in world coordinates. fi- is the force exerted on link i by link i - 1 at joint i. nj is
the moment exerted on link i by link i - 1 at joint i. fL is the apparent force exerted on link i,
considering its positional acceleration. n4 is the apparent moment exerted on link i, considering its
angular acceleration. fill' is the external force exerted on the COM of link i. ný.t is the external
moment exerted on the COM of link i. Oi is the origin of link i. Ci is the COM of link i. 8, is a
scalar quantity that represents the joint angle at joint i. wi is the angular velocity of link i. vi is
the positional velocity of 0,. vc, is the positional velocity of Ci. mi is the mass of link i. Ii is the
inertia tensor of link i. zi is the unit vector in the direction of the joint axis i.

The outward iteration (i = 0,..., s - 1) computes the accelerations and the apparent link forces
and moments [11]:

W1+1 = wi + k,+1zi+1  (6)
L =i+l = ;i + i X k+1zi+1 + k+lZi+l (7)

ii+ 4 = +bi +k x O 4Oi+1 + Wi x (,i X O.O;C+ 1 ) (8)
Viyc+l = b)i+1 +J C4+1 X Oi+1lCi+l +t udi+l X (Wdi+1 X Oi;lCi+l) (9)

fiL41  = mi+lvc,+1  (10)
nL+1 = 1i1l41 + Wi+l X +iwi+i (11)

The inward iteration (i = s - 1,..., 1) can now begin computing the joint forces and moments.
Considering all the forces acting on link i, we have

f;+ =(12)
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which can be solved for f!

:: = f4.I + .L_- fiex. (13)

Considering all the moments acting on link i,

ný - n2+1 + n,-o' + 070, x fJ + oCC, x fe' + o7o,+1 x (-41+,) =n (14)

which can be solved for n1,
n4 = ,,'+, - nix' oiC, fez '+ 0o0o+1 x f!, + n, (15)

Once nj is computed, the joint torque ri is given as

ri = nj. z, (16)

It is easy to see that this algorithm is 0(s), where s is the number of the links.

B Resolving the Closed Loop at the Lower Limbs

Let fPT and 7 PT be the force and torque exerted on upper body by the pelvis (Figure 6). Let fLP

and fRP be the reaction forces acting on the pelvis from the left and right thighs, respectively. Let
f`- be the external force on the pelvis. Let TLP and -RP be the torque exerted from the left and
right thighs to the pelvis, respectively. Let r11 be the external torque acting on the pelvis.

When an apparent force FP (when the mass and acceleration of the pelvis are m and iJpelvis,

FP - m • Pe•is,) is acting on the pelvis, we have the following relation between the forces:

ofet - fPT + fLP + fRP = FP (17)

Let f = fLP + fRP, then
f = _f-t + fit + FP (18)

We distribute f according the the relative distances al and a, of the projection of the center of
mass from the ankles. Thus fLP = a" .f and fRP = a, .f, where al +a,. = 1,ai Ž! O,a, > 0.

Let TfTP be the moment generated by fTP, which is given by ½XRL X fTP, where zRL is the
vector from the right hip to the left hip. Let -f LP be the moment generated by fLP, which is given
by xRL X fLP. Let rp be the apparent moment on the pelvis, and T-ext be the external moment on
the pelvis. We have

,ext + rLP + T-RP _TPT +T -TP+ + TfLP = TP. (19)

Similarly as above, rLP and rRP are given by at - r and a, T r, where

T=-_TeXt + r PT _ -f T P -- TLP + Tp. (20)
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Abstract

This paper develops a new approach to shape modeling based on blending. Blended shape models
are constructed by performing a linear interpolation of parameterized shapes using a blending
function. This blending function is a B-spline that specifies the way shapes are combined,
and has control points that are parameters of the shape. The blended shape can have aspects
of each of the shapes of which it is composed. In this way, we can create models that can
change genus to be that of any of the component shapes. These shapes use a small number
of global parameters, and hence compactly represent complex shapes. Our models also include
local deformations, which are added on top of the blended shape, and can be used to create fine
detail. Using a physics-based approach, these geometric models are transformed into deformable
models that deform based on forces from a simulated physical environment. By devising rules
for transforming between blended shapes, we develop a variation of morphing called parameter
morphing. These models can also be used for shape estimation applications by having blended
models conform to data sets due to forces applied by the data. We present our technique through
a series of dynamic animations.



Blending and Morphing of Dynamic Shapes

Abstract ing function, which is used to combine parameterized
This paper develops a new approach to shape mod- primitives.
eling based on blending. Blended shape models are A class of dynamic locally and globally deformable
constructed by performing a linear interpolation of pa- primitives was introduced in [13, 22]. These primi-
rameterized shapes using a blending function. This tives include global deformation parameters that rep-
blending function is a B-spline that specifies the way resent the salient shape features of natural parts, and
shapes are combined, and has control points that are local deformation parameters which capture shape de-
parameters of the shape. The blended shape can have tails. These models have a geometric structure that al-
aspects of each of the shapes of which it is composed. In lows the combination of parametric models (such as su-
this way, we can create models that can change genus perquadrics), parameterized global deformations (such
to be that of any of the component shapes. These as bending or twisting) and local spline free-form de-
shapes use a small number of global parameters, and formations. In this way, the descriptive power of these
hence compactly represent complex shapes. Our mod- models is a superset of locally deformable models [21]
els also include local deformations, which are added on and globally deformable models [15, 24].
top of the blended shape, and can be used to create The main limitation of these deformable primitives,
fine detail. Using a physics-based approach, these geo- and every other shape model used in computer graph-
metric models are transformed into deformable models ics, is that they are not general enough to represent
that deform based on forces from a simulated physical a very large number of possible shapes that may be
environment. By devising rules for transforming be- needed in an animation with a few intuitive param-
tween blended shapes, we develop a variation of mor- eters. We move toward overcoming this limitation
phing called parameter morphing. These models can by developing a new class of deformable models that
also be used for shape estimation applications by hav- we dub Blended Deformable Models. These new de-
ing blended models conform to data sets due to forces formable models are a superset of previously defined
applied by the data. We present our technique through deformable models and allow genus changes (a sphere
a series of dynamic animations. can deform into a torus). Our blended shapes are a

linear interpolation of any two shapes that can be de-Category: Research paper fined parametrically on a common material coordinate
Format: Regular paper space. The linear interpolation is performed using a
Keywords: Shape and Object Representation, Shape blending function that specifies how the two shapes are
Blending, Parameter Morphing, Deformable Models, blended together. For example, a sphere and a cylinder
Physics-Based Modeling, Shape Estimation, Finite El- blended together could produce a bullet shaped object
ements. (see Fig. 2). A sphere and torus blended together would

produce an object that could be either genus 0 or genus
1 Introduction 1, depending on the blending function. Fig. 5 shows a

variety of shapes that we can model by blending pa-
Shape modeling is an important part of computer rameterized primitives.
graphics and solid modeling, and has attracted signifi- Dynamics is added to these blended models using the
cant attention in the past decades. Due to the variety previously developed physics-based framework of [13].
of applications, it requires the use of models that max- The blended models introduced here do not require ad-
imize shape coverage, represent shape detail, provide ditional machinery to fit into this framework.
a useful abstraction of shape, and are useful in shape Under normal conditions, it is not topologically pos-
morphing, and dynamic animations. Most of the exist- sible for the genus of a shape to change. Neverthe-
ing shape models and associated techniques are limited less, we present a systematic technique for changing the
to subsets of the above requirements. In this paper genus of a model by altering the connectivity of the sur-
we present a unified approach to shape modeling that face without introducing discontinuities in shape. This
develops models and techniques that are useful in a alteration occurs at the point when a sphere is dimpled
wide range of applications. Using these models, the inward at the poles so that it resembles a torus with a
shape can be intuitively and efficiently represented by zero sized hole (see Fig. 3).
a few parameters that cover a large number of different To improve the behavior of the blending and to
shapes including shapes with varying genus. The flex- make the object tessellation more uniform (such as
ibility of these models comes from the use of a blend- for a "square" superquadric), we permit scaling of the

material coordinate space. In conjuction with rules
for blending between classes of shapes, this operation
makes the models useful for shape morphing. This
morphing, refered to as parameter morphing, in con-
trast to traditional graphics morphing applications, is
based on parameter interpolation. We also show how



blended shapes can be used for shape estimation using defined parametrically in u and parameterized by the
the framework of [12]. variables a,. The shape represented by e is subjected to

the global deformation T which depends on the global
2 Related Work deformation parameters bi.

Although generally non-linear, e and T are assumed
Several researchers have proposed shape models that to be differentiable so that we may compute the Jaco-
are suitable for shape representation, morphing and bian of s. T may be a composite sequence of primitive
shape estimation. A variety of volumetric primitives deformation functions T(e) = TI(T 2(... T, (e))).
have been proposed in [1, 2, 4]. The integration of For the examples in this paper, we use a global bend-
dynamics with these primitives was shown in [16, 21]. ing deformation similar to that given by Barr [2] along
Global deformations of objects are presented in [2, 2 4 J, the : axis in the x direction.
and local deformations have been presented in [17]. In the next section, the primitive definition for a su-
A hybrid of global and local deformations was pre- pertoroid is presented. Note that any parameterized
sented in [13, 22]. Other shape representations such as primitives (not just superquadrics and supertoroids)
[19] used oriented particle systems to represent com- can be used for shape blending. Subsequently, we de-
plex surfaces using connectivity information, but do scribe our shape blending technique.
not provice a compact abstraction of shape. The field
of solid modeling has produced powerful shape repre- 3.1.1 Supertoroid Definition
sentation techniques using surface blends [7, 8, 23], but The definition for the supertoroid primitive (with 7
these techniques are not convenient for dynamic anima- parameters) is given by
tions and shape estimation.

Many shape blending and morphing techniques have
been developed [3, 10, 11, 18]. The characteristic of (a4 + C2)f
these techniques is the development of algorithms for e-,z-(a4 + C2 " )S2 u f (-7r/2, ir/2]

interpolation of shapes between an initial and a fi- a5+1 V f (_•r, 7]

nal shape, and to establish a correspondence between a3S2u"1

points on the shape. None of these techniques are based Cu = sgn(cosu) cos' Jul Su' = sgn(sinu) sin' Jul
on the use of model parameters due to the lack so far of
parametric models with sufficiently large shape cover- where a,, a2, a3, C1 , C2 > 0 and a4 , a5 _> 1. a,, a2 and
age. Recent shape estimation techniques in computer a3 are size parameters in the z, y and z directions
graphics [6, 9] are based on local shape representations respectively. el and C2 are squareness parameters as in
only, making it computationally inefficient for shapes a superquadric. a4 and a5 are hole radius parameters
that can be described parameterically (e.g., a cube, a in the z and y directions. The hole is closed for values
torus), of 1, and opens as these parameters increase.

This is a similar definition of a supertoroid given by
3 Geometry of Deformable Models Barr [1]. One difference is the addition of as, a second

inner radius parameter, which adds flexibility in the
In general, our models are 3D shapes whose material shape coverage of this primitive by allowing asymmet-
coordinates u = (u, v) are defined in a domain fQ. The ric holes.
positions of points on the model relative to an inertial The second change is the addition of the scaling fac-
frame of reference 0 in space are given by a vector- tors 1/(a4 +1) and 1/(as+ 1). This separates the effects
valued, time varying function x(u, t). We set up a non- of the global size parameters (a,, a2 and a3) from the
inertial, model-centered reference frame 4 and express inner radii parameters (a4 and a5 ) to allow hole size
the position function as changes that do not affect the global torus size.

x = c + Rp, (1) 3.1.2 Blended Models
In a method analogous to the linear interpolation of

where c(t) is the origin of 0 at the center of the model two points, it is possible to blend two functions. Given
and the rotation matrix R(t) gives the orientation of two functions, 1F(z) and g(z), we can blend them using
4. relative to 1. Thus, p(u, t) gives the positions of a third function, a(z) (with range [0, 1]), so that
points on the model relative to the model frame.

We further express h(z) = f(z)a(z) + g(z)(1 - a(x)). (6)

p = s + d (2) An example of this is shown in Fig. 1. Notice how
haz t s f(z) where a(z) ; 1, h(z ý g( z) where

as the sum of a reference shape sit) and a local dis-. a xz s 0, and how h(z) is between f(() an g(x) ev-
placement d(u, t). erywhere.

Using this idea, we can blend parameterized shapes
3.1 Global Deformations (such as superquadrics) by the following:
As in [13], the reference shape is defined as s(u, v) = si(u, v)cr(u) +I s2(u, v)(1 - cr(u)) (7)

s = T(e; b0, b,), (3)
where s, and s2 are two shape primitives parameterized

where e represents a geometric primitive over 11, as in Fig. 2(a) and (b). While it would be
possible to have a vary with u and v, we restrict a

e(u; a0 ,a 1 ,...) (4) so it does not vary with v. Greater shape coverage is

2



f(WOWz+ Yet it is possible to have a transition between the two
(-a(z)),flx) 1 where there is a single discontinuous event - when the

object changes genus. This event only affects the topoi-
g(x) ogy of the object. and does not have an effect on shape.

The transformation is shown in Fig. 3.
In Fig. 3, s, is a torus, and S2 is a sphere. Initially,a(u) = 0, and the genus of the shape is 0. We compute

Figure 1: Blending of two functions f(z), g(z) given the blended result s using (7).
blending function a(x) Fig. 3(a) shows the initial sphere. After this, the

nodes slowly dimple inward (b) until they touch (c).
The values of a(!) and a(-!) change from 0 to 1 to
"produce this dimpling. The object is topologically a
sphere, but in (c), has the same shape as a torus with
a zero size hole (with a4 = a5 = 1).

It is at this point where the topology changes to be
-. 2 0 W7 that of a torus (c). This point is easily detected by

observing the blending function at its endpoints. The
(a) (b) (c) (d) connectivity of the surface is changed to accommodate

this change in topology. A discussion of how the node
Figure 2: (a) Shape s, (b) Shape S2 (c) Blended shape interconnections change is given in section 3.1.4. The
s (d) Blending function a(u) hole can now be opened by increasing the torus inner

radius parameters, shown in (d) and (e) (which are
shown from a different viewpoint to make the hole vis-

achieved by blending several already blended shapes. ible).
This produces a more hierarchical structure of shape.

Fig. 2(c) shows the result of blending the shapes
shown in Fig. 2(a) and (b). The blending function
used to blend the shapes is shown in Fig. 2(d). The
blending is performed along u, which corresponds to
the z-axis in these shapes (from pole to pole). Notice
how the "top" of s looks like s2 since a(l) = 0, and
how the "bottom" of s looks like s1 since a(-I) = 1. (a) (b)

The global parameters of s will include the global
parameters of s, and those of 82. It will also include
any global deformation parameters in T. Note that
while T is applied separately to each shape, there is
only one set of global deformation parameters for the S
blended shape. The parameters to describe a are also
included (see section 3.1.5). (c) (d) (e)

Any two parametrically defined shapes that have the
same domain Q can be blended this way (this includes Figure 3: Changing from a sphere (a) to a torus (e)
other blended shapes). If the closure of both domains
is the same, the blending can still be applied directly, There are two constraints on the parameters of a
assuming the shape "wraps around" to the open area torus-sphere blend that must be enforced to insure the
in fl space. If they are not defined over the same do- blended shape remains closed. Whenever the object

main, an invertible mapping can be found to make the is genus 0, the torus parameters a4 and as must be
domains agree (after closing both domains). 1 (to form a zero size hole in the torus). The second

When blending shapes, not all combinations of restriction is whenever the object has genus 1, a(l)
shapes will achieve the desired result. For example, and a(-!.) must have the value 1 (intermediate values
"if two shapes are incompatible, the blended result may of a need not be constrained). This way, the blended
be non-intuitively shaped and interpenetrating. There object is completely toroidal at the center of the hole.
must also be a correspondence between the two shapes This idea for changing the genus of shapes can be
so that the points that should be blended are at the applied to any shape primitives. In this case, since a
same position in Q space. Section 6.1 shows how this varies only with u, the types of holes that can be added
correspondence can be altered without changing the is limited.
shape to make two shape parameterizations compati-
ble. 3.1.4 Node Interconnections

When changing the genus of an object, the mesh
3.1.3 Genus changing of nodes must be reconnected to conform to the new

It is also possible to blend objects of different genus, topology. This is a straightforward, but necessary part
such as a sphere (genus 0) and a torus (genus 1). The of the genus conversion process. Fig. 4 shows how 0 is
resulting blended object will have a hole which can ap- "foldedup" to produce a sphere or torus. The arrows in
pear depending on a. these diagrams indicate two nodes being "merged" to-

Obviously, there is no smooth transition between gether, since the material coordinates of the nodes map
these two shapes because they are not homeomorphic. to the same model coordinates. For both the sphere

3



and the torus, a tube is made first (the dotted lines).
For a sphere (a), the north and south poles are created
by closing each end of the tube. For a torus (b), the 0 i = 0
ends of the tube are connected together. b - .+ odd

2 1 i=2L (9)
'1i /2 otherwise (junction points)

This construction yields a CI quadratic B-spline
A. I function, which can become CO if two knots have equal
L. t_ value. The curve is interpolated exactly at the end-

points and at each junction point, and is guaranteed
(a) (b) to always be in the range [0,1].

Figure 4: Node interconnection differences between a 3.1.6 Shape coverage
sphere (a) and torus (b) By using different blending functions, we can create a

variety of shapes shown in Fig. 5. The first four shapes

When the genus changes, the node mesh must be are combinations of two superquadrics. Notice how
unfolded, and re-folded to have the proper configura- some of the objects have both "square" and "round"
tion. Elements must also be either added or removed areas, which is not easily representable using tapering
to eliminate any degenerate elements. or other global deformations. The last two shapes are

a combination of a superquadric and a supertoroid.

3.1.5 Blending Function Parameterization

The blending function is implemented as a piecewise
non-uniform C' quadratic B-spline [5]. These curves
are used because they can easily be made into :-y func-
tions, and can be bounded to a particular range using
their convex hull property. Their endpoint interpola-
tion property also proves to be useful to enforce the
constraint on the blending function a when the genus Abi
changes.

Given different types of shape primitives, the domain
of a may change. To generalize the implementation we
will define a canonical blending function, /3 : [0, i]
10, 1].

For the case of a superquadric, we use the blending
function i : [-j,-j] .-. [0, 1]. We can obtain /3 by Figure 5: Examples of blended shapes using su-
scaling the domain so that we have perquadrics and supertoroids (without any global pa-

rameterized deformations)

=(8)

3.2 Local Deformations

A CI quadratic B-spline of L pieces has 2L+1 control The implementation of local deformations uses C' fi-
points, {b, = (b.,,b,) I i • 0... 2L}, and L + 1 knots, nite elements to represent the local displacements, as{upi, i =0..L} (with iuc <0 . for all + 1i kj o L) in [22, 12]. This method does not require any alterationOf the +1 c on..L}wtr poin L +2 pointsl(called j-ner for shape blending applications.
Of the 2L + 1 contre needes, L + 2 points (called inner We use model that simulates a thin plate under ten-
control points), are needed to specify the curve. TheC' model sur-inner points oI a B-spline are b0 , {b 21+, I i eO 0.. .- } indfraineegsial o 1mdlsr

face [12]. The strain energy is approximated using tri-and b2L. angular finite elements [13] whose shape functions are
The remaining L - 1 points (called junction points) tensor products of one-dimensional Hermite polynomi-

are added to enforce C1 continuity, and are easily com- als [25].
puted from the inner points and knots [5]. There is one
junction point for each knot except u0 and UL. The 4 Dynamics
curve passes through each junction point, and the end-
points. The dynamics framework in [13], requires the com-

The de Casteljau algorithm [5] is used to find values putation of the shape model jacobian, J. q =
of/3 at a particular point for each curve segment. This (q', qT, q', q')T is the vector of the model's gen-
results in a piecewise parametric function in t, p(t) = eralized coordinates , where q, = c, q# = 0, and
(z Y)T with t C [uO, UL]. To insure p(t) is a function q, = (q,,, q",, b, T%,T (q,5 and q,2 are the param-
with domain [0, 1], we set z = t, U0 = 0 and UL = 1. To eters of each of the blended shapes, qb is described in
find the z-components of the control points, we solve section 4.1, and qT are the parameters of the parame-
p(t) = (z y)T = (t y)T , resulting in terized global deformations, such as bending). q. are
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the "rest" parameters of the shape, analogous to the changing the parameters of the object from one set to
rest length of a Hookean spring, another, a reasonable metamorphosis is obtained.

To specify the dynamics, welintroduce a mass distri- The morphing between two parameterized shapes
bution p(u) over the model and assume that the ma- can be performed by a simple linear interpolation of
terial is subject to frictional damping. We also assume their parameters across time. For now, we will assume
that the material may deform elastically or viscoelas- that the two shape models to be morphed have the
tically. same structure (they are composed of the same blended

From Lagrangian mechanics we obtain second-order primitives, and have the same number of blending pa-
equations of motion which take the form rameters). Section 5.1 describes how two differing

shape models can be made compatible for morphing
M4 +D4 +K(q-q.)=f9+gq, (10) purposes.

When morphing between two parameterized shapes
where M, D and K are the generalized mass, damping (which have the same parameterization), we have the
and stiffness matrices, repsectively. fq is the vector of shapes s and s', which have parameters q and q' respec-
generalized external forces applied to the model (such tively. The duration of the morph is t,. We will denote
as gravity, friction and collision forces). g is the vector the elapsed time of the morph as te, where 0 < t, < tin.
of generalized inertial forces, which include coriolis and For morphing where there is no change of genus, all
centrifugal forces. The derivation and computation of parameters are interpolated directly, so that for the
these quantities is described in detail in [12). parameters in q, and qd,

4.1 Blending function dynamics (=) qt + q( (14)

The parameters used to construct the blending func- qmorph q in) - )(
tion are the L + 2 control point by values and the L - 1 For morphing instances where there is a genus change,
movable knots (u0 and UL are fixed), which is 2L + 1 the morphing must be broken down into two non-toa aaeesto specify ca. We concatenate all these temrhn utb rkndw notonn
total parameters toverlapping stages. The first stage is to place the object
parameters into the vector qb, so that in a state where it is legal to change genus. The sec-

ond stage would be to open the hole. During each of
q =(byo, b •1,. . ,+1,... , by2L, 1,bpL, these stages, those parameters that are not restricted"" = ( .- Iby genus are interpolated using (14).

U1, . U... , .l)rT. (11) For the case of morphing from a sphere to a torus
using a sphere-torus blended model, the first stage has

To determine how these parameters change due to a4 and a5 of the torus fixed, and the blending function
applied forces, the jacobian is needed. Given (7) above, endpoints morphing to the torus side. At the end of

this stage, the sphere-torus will be in a state where the
hole can be opened. The second stage has a4 and as

s=(u, Vq = (s(U, V) V) 5 a((u) (12) morphing to their final values. This produces a smooth
Oqb SU - , q transition during a genus change. In order for these

parameters to change by the end of their stages, for
To compute 8a(u) we use a simple modification to the affected parameters, t e is measured from the start

aq, of the stage, and tm is the stage duration. Morphing
the de Casteljau algorithm using the product rule. To from a torus to a sphere is accomplished by performed
make sure the components of qb have reasonable values, the above in the reverse order.
the constraints by c [0, 1] and ui < uj for all 0 < i <
.j < L are enforced.

The addition of blending also changes the jacobian 5 Morphing and Blending
for the global shape. J, 1 is the jacobian for the first When morphing between two objects that have differ-
shape (with respect to q,-), and J, 2 is the jacobian for ent shape models, we create a blended type that blends

o the second shape (with respect to q, 2). The jacobian the two models, and morphs between them. For exam-
for the blended shape using (7) pie, to morph between a torus and a sphere, create both

objects as a torus-sphere blend, and morph the blended
J = (a(u)j,, (1 - a(u))jT, ')T (13) shapes. In order to have intuitive intermediate shapes,both parts of each blended shape should have a similar

Intuitively, this means the jacobians for the compo- appearance. For example, if a torus is "upgraded" to a
nents of a blended shape have a greater or lesser effect sphere-torus blend, the sphere size parameters (a ,, a2
at a particular location depending on the function a. and a3 ) should be set to those of the torus.

Knot insertion methods [5]can be used to insert
5 Parameter Morphing additional control points of the blending function to

morph two models with different numbers of blending
Parameter morphing is a different approach to morph- parameters.
ing than image or volume morphing [3, 10, 11] and 2-D
shape blending [18]. Much of the difficulty in these 5.2 Morphing and Dynamics
methods is establishing a correspondence between the
two objects being morphed. When an object is morphing, the velocities of nodes are

When morphing between two parameterized shapes, affected. This can affect the computation of coriolis
a correspondence has already been established using forces (part of gq) and friction forces. To integrate
the material coordinate space. As a result, by simply morphing with dynamics to affect these velocities, an
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additional term to q. and q4 is added when computing The jacobian of e may have an additional term if
nodal velocities, p, so that any of the parameters of e are used in S. However,

the change associated with this derivative term is not
! i + d = J(4. + i..orph) + S(f•d + idmorph) (15) useful for modeling purposes because it originates not

from a change in shape, but instead in a change in
where qmorph and q are the rates of change of material parameter space scale.

dby morphing, and are given by When discretizing a superquadric, the nodes tend
parameters causedto collect near the "squared" edges if c, or (2 is near

= - q. 4d,,1, = q- d (1 zero. Fig. 6(a) shows an example of this uneven node
d (16) spacing.

There will also be additional constant factors in the
above formulas for those parameters that are changed
faster during genus changing stages.

In a dynamic system, it is possible for some of the U
parameters to change due to forces. When morphing,
it would not be correct to simply alter the parameters
using (14). Instead, the morphing velocities in (16) can
be added to the true velocities inside the numerical in- (a) (b)
tegration process. For instance, for an Euler integra-
tion with time step At, the parameter update for q, Figure 6: Example of a superquadric (1) = =
would be Fgr :Eapeo ueqarc(, f

with unscaled (a) and scaled space (b)
qinew =- q. + AXt(q 1 + q~mor,ph) (17) Instead of this, we use an approximation by pro-

and similarly for qd. jecting a unit superquadric onto the unit sphere when
(16) is used to update the rest shape parameters, q0 . cl < 1 or (2 < 1, and place nodes on the superquadric

This way, the underlying rest shape is morphed, and where they project down to nodes on the sphere, as in
the shape will return to this rest shape when no forces Fig. 7(a). While this solution is approximate, it is fast,
are applied. The actual shape has offsets added using and produces adequate results.
(17) to cause the changes in shape due to morphing.

For more interesting effects, substance attributes
such as total mass or stiffness values wo and wi can be superquadric (e I
morphing using a linear interpolation similar to that in Z 4)

(14). sphere
Morphing is not a real physical process, and can add

or remove energy from a system. When objects morph S-m .(u),si3,sinfu))
during a collision, the object can "push off" the col-
liding object if it is becoming larger due to morphing.
If an object is becoming smaller due to morphing dur-
ing a collision, a "cushioning" of the collision is ob-
served. Inertial forces can also be created due to mor- (a)
phing. Objects can lunge a particular direction when
the morphing causes the mass of part of an object to Z sphere
shift. Changes in the moment of inertia of an object / torus (a4 =a
can affect angular velocity. __I ___(2_ = cos2 St(u)

6 Model Discretization

6.1 Space scaling
For a shape e(u) with u e 0), we can scale or warp) the
domain so that we have e(S(u)), where 0 - Q is .i
invertible. This operation does not change the shape, (b)
but instead changes how the material parameters are
mapped onto the object (e.&.- for a discretized object, Figure 7: Space scaling for a superquadric (a) and torus
the nodes will change position, but the shape will re- (b) (first quadrant, y = 0)
main the same).

There are two reasons why this space scaling is nec-
essary. The first reason is to increase the uniformity of In order to find the scaling function S,(u), we solve
the discretization of a shape primitive. With a very un- tan u = tan", S, (u). When we generalize to all quad-
even discretization, more nodes are needed to compen- rants, and do a similar calculation for v and C2, we
sate, and numerical inaccuracies are introduced. The obtain
second reason to scale space is to "line up" two pa-
rameterizations to insure the blending has the desired S.,(u) = tan-1 TU (18)
result, and to insure the jacobians of the blending pa-
rameters have meaningful values. S•,.(v) = tan-1T2
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where T.' = sgn(tan u) tan' lul. This scaling is per- area of element j, where j t E (E is the index set
formed only when el < 1 or C2 < 1. for elements). Adji C E is the set of elements that

Fig. 8 shows the behavior of (18) on u-v space with contain node i, as shown in figure 9.
decreasing values of o. The example where ( = 0.25 The mass for node i is given by
shows the space scale used to correct the node distri-
bution for the superquadric in Fig. 6(b). The scaling A
in (18) can also be applied to a supertoroid to correctly A I
rescale any uneven discretization problems caused by mass, - e•pj ) (20)
torus squareness when cl < 1 or e2 <1. 3 J 4A

. E
1= .0 [ 0.5 2 •0.25

! &AAALU where pi is the mass density of the material at node
i. The three in the denominator originates from the

U U triangular elements, since the area of each element is
divided equally between the nodes it contains. The sum
of these nodal masses is the total mass of the material.

-X V V I 2 - V

Figure 8: Example of scaled space (superquadric) with Adj,
varying c = £1 = £2

The scaling function for a torus (St) is used to mini- node i
mize the effect of the difference in parameterizations of
the supertoroid and superquadric when blended. The
difference the scaling has on the shape is small, and Figure 9: Lumped node mass calculation
only makes a significant difference when calculating
the jacobian of the blending parameters near the torus
hole. If not scaled properly, these jacobians may be 7 Shape Estimation
nearly parallel to the surface (when they should be
nearly perpendicular). The shape estimation techniques in the framework of

To minimize this difference when a torus and su- [121 can be applied directly to blended shape models.
perquadric are blended, we project the unit torus (with The order in which parameters are allowed to change
a zero size hole) onto the unit sphere, in a direction par- is scheduled, so that some parameters remain fixed. For
allel to the z axis (along the hole) as shown in Fit,. 7(b). example, the initial fit for a superquadric would vary
This projection is performed assuming the torus has a only a,, a2 and a3. This prevents the shape from being
zero sized hole (a 4 = a5 = 1). It is for this case that caught in a local minimum energy solution.
the jacobians of the blending parameters near the hole To allow genus changing during shape estimation,
are affected most. Solving for St, and generalizing for the constraints on parameters are enforced (such as
all quadrants, we obtain not allowing the torus hole to open until the topology

of the mesh is toroidal). The mesh topology can be
St. (u) = sgn u cos- 1  (19) altered as described in section 3.1.3. The time of this
St,(v) = V change is determined by observing the control points

of the blending function.
When applying more than one space scaling function,

those that make parameterizations compatible should 8 Implementation
be applied first, followed by those that improve tes- We demonstrate our technique through a series of ex-
sellations. For the supertoroid case, we would have involving morhin animations, dy an-" edru,(as(•q~u))).perimnents inovn ophig anmtos ynamnic -

imations and shape estimation using our primitives. By
6.2 Nodal Mass Computation using an adaptive Euler technique, our method runs at

interactive rates on standard Silicon Graphics work-
For dynamics purposes, the entire mass of the object stations. When rendering texture mapped objects,
is assumed to be lumped at the nodes of the object. the texture for both objects is drawn using an alpha-
To produce an accurate simulation, these mass values transparency blended combination of the textures of
should reflect the actual mass of the object in the region both objects. All rendering (including shadows and
of the node. texture mapping) was performed using the standard

For an evenly spaced tesselation, the mass of each SGI GL library.
node would be equal. While the methods for altering
tesselations described in the previous section improve 9 Experiments
uneven node distribution, they do not yield evenly
spaced tesselations. In general, it is difficult and com- Two experiments to demonstrate blended shapes with
putationally expensive to produce an evenly spaced tes- morphing and dynamics have been performed, and are
selation. included on the accompanying animation.

We approximate the lumped node mass for node i The first experiment exhibits the "pushing off" and
by computing the ratio of the surface area near node i "cushioning" that morphing can cause during a colli-
to the total surface area. We denote Aj as the surface sion. The first morph shows the shape getting larger as
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it collides, so that it jumps higher than it started. The 'S] M. Halstead, M., Kas, M., and DeRose, T. "Efficient,
object becomes smaller during second morph, caus- Fair Interpolation using Catmull-Clark Surfaces", Com-
ing the collision to be cushioned. Later, when a sim- puter Graphics (Proc. SIGGRAPH), pp. 35-44, 1993.
ilar simulation is run with the timing of the second [7] C.M. Hoffmann and J. Hopcroft. "The Geometry of Projec-
morph slightly changed, the effect of the "cushioning tive Blending Surfaces", Artificial Intelhgence, 37, pp.357-
is greatly decreased. 376, 1988.

The second experiment shows a longer sequence of [8] C.M. Hoffmann. "Geometric and Solid Modeling", Morgan-
morphing and dynamic interaction. In the morphing Kaufmann. Palo Alto, 1989.
sequence, initially, an apple is at rest on a table. It [9] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald,
morphs into a banana, and the bending and uneven W. Stuetzle. "Surface Reconstruction from Unorganized
mass distribution of the banana causes the object to Points", Computer Graphics (Proc. SIGGRAPH), pp. 71-"push off" the table and start to rotate. Its rotation 75, 1992.
accelerates as it morphs into an orange, which has a [10] J. Hughes. "Scheduled Fourier Volume Morphing", Coin-
smaller radius than the banana. The orange becomes puter Graphics (Proc. SIGGRAPH), pp. 43-46, 1992.
a mushroom, which has a lower mass than the otherobjects, and then the apple returns. Next the apple [11] J. Kent, W. Carlson, R. Parent. "Shape Trantsformationobj e ts, and th en th e app e re urn . N xt t e a plefor Polyhedral O bjects", C om puter G raphics (P ro c. SIG -
morphs to a donut, demonstrating genus change. Af- GRAPH), pp. 47-54, 1992.
ter coming to rest on the table again, the object morphs [12] D. Metaxas. "Physics-Based Modeling of Nonrigid Objectsinto an orange (at which point the hole closes), then a oVionadGphcP..TesDprtntf

banaa. pin th bedinof te bnan gies isefor Vision and Graphics", Ph.D. Thesis, Department ofbanana. Aain, the bending of the banana gives rise1992.
to an inertial force: the banana rotates quickly and
"lunges" toward the table. Finally, the object, bounc- [13] D. Metaxas and D. Terzopoulos. "Dynamic Deformationing on the table, morphs into a mushroom and comes of Solid Primitives with Constraints", Computer Graphics

to rest. During this final morph, coriolis forces can be (Proc. SIGGRAPH), 26(2), pp. 309-312,1992.
observed, caused by the change in shape during rota- [14] A. Pentland. "Perceptual Organization and the Repre-
tion. In the dynamic interaction, we show how to build sentation of Natural Form", Artificial Intelligence, 28,
the apple using a user interface for the construction of pp. 293-331, 1986.

blended shapes. [15] A. Pentland and S. Sclaroff. "Closed-Form Solutions for
Last is a shape estimation example using incomplete Physically Based Shape Modeling and Recognition", IEEE

range data of a torus-shaped object. A superquadric- Pattern Analpsis and Machine Intelligence, 13(7), pp. 715-
supertoroid model is used and is initialized as a sphere 729, 1991.
shape. The shape and genus of the model changes dy- [16] S. Sclaroff and A. Pentland. "Generalized Implicit Func-
namically to fit the data. tions for Computer Graphics", Computer Graphics (Proc.

SIGGRAPH), 25(4):247-250, 1991.

10 Conclusion [17] T.W. Sederberg and S.R. Parry. "Free-form Deformation
of Solid Geometric Primitives", Computer Graphics (Proc.

In this paper we developed a new approach to shape SIGGRAPH), 20(4), pp. 151-160, 1986.
modeling by blending parameterized primitives using a [18) T. Sederberg and E. Greenwood. "A Physically Based Ap-
B-spline as a blending function. We were able to cre- proach to 2-D Shape Blending", Computer Graphics (Proc.
ate a large number of shapes with varying genus using SIGGRAPH), 26(2), pp. 25-34, 1992.
a small number of parameters. By applying physics- [19] R. Szeliski, D. Tonneson "Surface Modeling with Ori-
based techniques we transformed these models to dy- ented Particle Systems", Computer Graphics (Proc. SIG-
namic models that were used for dynamic animations. GRAPH), 26(2), pp. 185-194, 1992.
Due to their large shape coverage, we used these new [20] R. Szeliski, D. Tonnesen and D. Terzopoulos. "Modeling
models in morphing animations which were based on Surfaces of Arbitrary Topology with Dynamic Particles",
systematic changes of their parameters. Finally we Proc. CVPR '93, pp. 82-87, New York, June 1993.
demonstrated the usefulness of our models in shape es- [21] D. Terzopoulos, A. Witkin, and M. Kass. "Constraints on
timation from incomplete sparse range data even when Deformable Models: Recovering 3D Shape and Nonrigid
a genus change was required during the model fitting motion", Artificial Intelligence, 36(1):91-123, 1988.
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Abstract

Realistic animation of human-like characters should be based on cognitive behavioral principles
to maximize expressive realism. We describe the principles underlying movements performed
during conversations between two people. Using these principles, we designed and implemented
a system to automatically animate conversations between multiple human-like agents with ap-
propriate and synchronized speech, intonation, facial expressions, and hand gestures. The con-
versation is created% by a dialogue planner that produces the text as well as the intonation of
the utterances. The speaker/listener relationship, the text, and the intonation in turn drive
facial expressions, lip motions, eye gaze, head motion, and arm gesture generators. The facial
motion models are driven and synchronized by parallel transition networks. Coordinated arm,
wrist, and hand motions are invoked to create semantically meaningful gestures. Throughout
we will use examples from an actual synthesized conversation which is fully aiiimated on the
accompanying videotape.



1 Introduction

When faced with the task of bringing to life a human-like character, at. ors currently enjoy
few options. Either they can manually and laboriously manipulate the n , ous degrees of free-
dom in a synthetic figure, they can write or acquire increasingly sophistic, e motion generation
software such as inverse kinematics and dynamics, or they can resort to rformance-based"
motions obtained from a live actor. The emergence of low-cost, real-time r: )n sensing devices
has led to renewed interest in active motion capture since 3D position ax i "ientation trajec-
tories may be acquired directly rather than from tedious image rotoscop 1ý 36]. Both facial
and gestural motions are efficiently tracked from a suitably harnessed act, ut this does not
imply that the end of manual or synthesized animation is near. Instead ii a ýs the challenge
of providing a sophisticated toolkit for human character animation that (; e not require the
presence nor skill of a live actor [2]. There are four reasons for this:

"* Generalizing sensed motion from a real actor to a synthetic actor of a "i rent body size
or shape may be difficult.

"* The motion sensing hardware may not be available.

"* Skilled actor(s) may not be available.

"* Several interacting characters may be needed simultaneously (for examp . iring a con-
versation).

"* The animator might be unable to manually synthesize convincing motion. I Darticular,
a program might need to automatically generate a character's gestures anG fa I motions
during speech or conversation that happens in real-time or in response to a L questions
or statements.

We believe that the last two points are sufficiently important to justify a continu 'S earch for
automatic software synthesis of human motions. These two conditions motivate o - stem for
automatically animating conversations between multiple human-like agents with api .o 'ate and
synchronized speech, intonation, facial ezpressions, and hand gestures. Especially it worthy
is the linkage between speech and gesture which has not been explored before in - i esizing
realistic animation. In people, speech, facial expressions, and gestures are physiolog. inked.

4 While an expert animator may realize this unconsciously in the "look" of a proper -nated
character, a program to automatically generate motions must know the rules in ad i This
paper presents a working system to realize interacting animated agents.

Conversation is an interactive dialogue between two agents. Conversation includ. s loken
language (words and contextually appropriate intonation marking topic and focus), fac %. iove-
ments (lip shapes, emotions, gaze direction, head motion), and hand gestures (har. ts tpes,
points, beats, and motions representing the topic of accompanying speech). Without al %n hese
verbal and non-verbal behaviors, one cannot have realistic or at least believable aut. ic ,ous
agents. To limit the problems (such as voice and face recognition) that arise from the ve-
ment of real human conversants, and to constrain the dialogue, we present the work in rm
of a dialogue generation program in which two copies of an identical program having mnt
knowledge of the world must cooperate to accomplish a goal. Both agents of the conv, a )n
collaborate via the dialogue to develop a simple plan of action. They interact with eacl. o '!r
to exchange information and ask questions.

In this paper, we first present the background information necessary to establish tht s
chrony of speech, facial expression, and gesture. We then look at the relevant computer gra .h
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literature on face an gesture animation. We can then proceed to a discussion of the system
architecture and its everal subcomponents. Throughout we will use examples from an actual
synthesized converst ion which is fully animated on the accompanying videotape.

2 Background

Faces change expr ssions continuously, and many of these changes are synchronized to what
is going on in con urrent conversation. Facial expressions are linked to the content of speech
(scrunching one's lose when talking about something unpleasant), emotion (wrinkling one's
eyebrows with wov ry), personality (frowning all the time), and other behavioral variables. Facial
expressions can rf ,ace sequences of words ("she was dressed [wrinkle nose, stick out tongue]")
as well as accom any them [16], and they can serve to help disambiguate what is being said
when the acousti signal is degraded. They do not occur randomly but rather are synchronized
to one's own spe- ch, or to the speech of others [11], [22].

Eye gaze is Iso an important feature of non-verbal communicative behaviors. Its main
functions are to .aelp regulate the flow of conversation, signal the search for feedback during an
interaction (ga: ng at the other person to see how she follows), look for information, express
emotion (lookii , downward in case of sadness), or influence another person's behavior (staring
at a person to .now power)[3], [13].

People also .rc-duce hand gestures spontaneously while they speak, and such gestures support
and expand oT information conveyed by words. The fact that gestures occur at the same time
as speech, an( rhat they carry the same meaning as speech, suggests that the production of the
two are intim .ely linked. In fact, not only are the meaning of words and of gestures intimately
linked in a d .course, but so are their functions in accomplishing conversational work: it has
been shown f hat certain kinds of gestures produced during conversation act to structure the
contributiow of the two participants (to signal when an utterance continues the same topic or
strikes out i'. a new direction), and to signal the contribution of particular utterances to the
current disc urse. It is clear that, like facial expression, gesture is not a kinesic performance
independen" of speech, or simply a 'translation' of speech. Rather, gesture and speech are so
intimately .3nnected that one cannot say which one is dependent on the other. Both can be
claimed to .rise from a single internal encoding process ([6], [7], [23], [29]).

2.0.1 Example

In this se. on of the paper we present a fragment of dialogue (the complt•Lc dialogue is given in
the appe Ax, and shown on the accompanying videotape), showing rule-generated intonation,
gesture, :-iad and eye movements, and their inter-synchronization. This example will serve to
demonstrate the phenomena described here, and in subsequent sections we will return to each
phenomzlion, to explain how rule-generation and synchronization are carried out.

Imagine that Gilbert is a bank teller, and George has asked Gilbert for help in obtaining $50
(as the kiialogue is generated automatically the two agents have to specify in advance each of
the goals they are working towards and steps they are following (see section 4.1); this explains
the redundancy of the dialogue).
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Gilbert: May I ask you something?
George: Go ahead.
Gilbert: Do you have an account at this bank?
George: Yes.
Gilbert: May I ask you something?
George: Go ahead.
Gilbert: Do you have fifty dollars in your account?
George: Yes.
Gilbert: May I ask you something?
George: Go ahead.
Gilbert: Do you have your checkbook with you?

When Gilbert asks a question, his voice rises. When George replies to a question, his voice
falls. When Gilbert asks George whether he has an account at the bank, he stresses the word
"account". When he asks whether George has his checkbook with him, he stresses the word
"checkbook".

Every time Gilbert replies affirmatively ("yes"), or turns the floor over to Gilbert ("go
ahead"), he nods his head, and raises his eyebrows. George and Gilbert look at each other when
Gilbert asks a question, but at the end of each question, Gilbert looks up slightly. During the
brief pause at the end of affirmative statements the speaker (always George, in this fragment)
blinks. To mark the end of the questions, Gilbert raises his eyebrows.

In saying the word -account", Gilbert forms a kind of box in front of him with his hands:
a metaphorical representation of a bank account in which one keeps money. When he says the
phrase "this bank," Gilbert points downward, towards the bank floor, with his right hand, while
maintaining the 'account' position with his left hand. In saying "checkbook", Gilbert sketches
the outlines of a checkbook in the air between him and his listener.

2.1 Functional Significance of Facial Expressions

Movements of the head and facial expressions can be characterized by their placement with
respect to the linguistic utterance and their significance in transmitting information [37]. The
set of facial movement clusters contains:

* syntactic functions: accompany the flow of speech and are synchronized at the verbal level.
Facial movements (such as raising the eyebrows, nodding the head or blinking while saying
"do you have your CHECKbook with you") can appear on an accented syllable or a pause.

e semantic functions: can emphasize what is being said, substitute for a word or refer to
an emotion (like wrinkling the nose while talking about something disgusting or smiling
while remembering a happy event: "it was such a NICE DAY.").

o dialogic functions: regulate the flow of speech and depend on the relationship between two
people (smooth turns1 are often co-occurrent with mutual gaze; e.g at the end of "do you
have your checkbook with you?", both interactants look at each other).

These three functions are modulated by various parameters:

* speaker and listener characteristic functions: convey information on speaker's social iden-
tity, emotion, attitude, age (friends spend more time looking at each other while talking
than a lying speaker who will avoid the other's gaze).

1 the listener does not interrupt or overlap the speaker

3



e listener functions: correspond to the listener's reactions to the speaker's speech; they can
be signals of agreement, of attention, of comprehension (like saying "I see", "mhmm").

2.2 Communicative Importance of Hand Gestures

Gesture too can be described in terms of its intrinsic relationship to speech. Three aspects of
this relationship are described before we go on to speak about the synchronization of the two
communicative channels.

First of all, four basic types of gestures occur only during speech ([29] estimates that 90% of
all gestures occur when the speaker is actually uttering something).

" Iconics represent some feature of the accompanying speech, such as sketching a small
rectangular space with one's two hands while saying "did you bring your CHECKBOOK?"

" Metaphorics represent an abstract feature concurrently spoken about, such as forming a
jaw-like shape with one hand, and pulling it towards one's body while saying "you must
WITHDRAW money".

" Deictics indicate a point in space. They accompany reference to persons, places and other
spatializeable discourse entities. An example is pointing to the ground while saying "do
you have an account at THIS bank?".

"* Beats are small formless waves of the hand that occur with heavily emphasized words,
occasions of turning over the floor to another speaker, and other kinds of special linguistic
work. An example is waving one's left hand briefly up and down along with the stressed
words in the phrase "go AHEAD".

In some discourse contexts about three-quarters of all clauses are accompanied by gestures of
one kind or another; of these, about 40% are iconic, 40% are beats, and the remaining 10% are
divided between deictic and metaphoric gestures [29]. And surprisingly, although the proportion
of different gestures may change, all of these types of gestures, and spontaneous gesturing in
general, are found in discourses by speakers of most languages.

Secondly, there is also a semantic and pragmatic relationship between the two media. Gesture
and speech do not always manifest the same information about an idea, but what they convey
is always complementary. That is, gesture may depict the way in which an action was carried
out when this aspect of meaning is not depicted in speech. For example, one speaker, describing
how one deposits checks into a bank account, said "you list the checks" while she depicted with
her hands that the deposit slip is to be turned over and turned vertically in order for the checks
to be listed in the spaces provided on the back of the slip.

Finally the importance of the interdependence of speech and gesture is shown by the fact
that speakers rely on information conveyed in gesture - sometimes even to the exclusion of
information conveyed by accompanying speech - as they try to comprehend a story [81.

Nonetheless, hand gestures and gaze behavior have been virtually absent from attempts to
animate autonomous or semi-autoromous agents in communicative contexts.

2.3 Synchronization of Gesture, Facial Movements, and Speech

Facial expression, eye gaze and hand gestures do not do their communicative work only within
single utterances, but also have inter-speaker effects. The presence or absence of confirmatory
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feedback by one conversational participant, via gaze or head movement, for example, affects the
behavior of the other. A conversation consists of the exchange of meaningful utterances and
of behavior. One person punctuates and reinforces her speech by head nods, smiles, and hand
gestures; the other person can smile back, vocalize, or shift gaze to show participation in the
conversation.

Our contribution to the animation of conversational interaction concentrates on the synchro-
nization of the various verbal and non-verbal behaviors. There is a strong temporal relationship
between the channels.

The body and the face do not move at random but in a very coordinated manner. Synchrony
implies that changes occurring in speech and in body movements should appear at the same
time. For example, when a word begins to be articulated, eye blink, hand movement, head
turning, brow raising can occur and can finish at the end of the word.

Synchrony occurs at all levels of speech: phonemic segment, word, phrase or long utterance.
Different facial motions are isomorphic to these groups [11], [22]. Some of them are more adapted
to the phoneme level, like an eye blink, while others act at the word level, like a frown. In the
example "Do you have a checkbook with you?", a raising eyebrow starts and ends on the accented
syllables "check", while a blink starts and ends on the pause marking the end of the utterance.
Facial expression of emphasis can match the emphasized segment, showing synchronization at
this level (a sequence of head nods can punctuate the emphasis). Moreover, some movements
reflect encoding-decoding difficulties and therefore coincide with hesitations and pauses inside
clauses [12]. Many hesitation pauses are produced at the beginning of speech and correlate with
avoidance of gaze (the head of the speaker turns away from the listener) as if to help the speaker
to concentrate on what she is going to say.

Gestures occur in synchrony with their semantically parallel linguistic units, although in
cases of hesitations, pauses or syntactically complex speech, it is the gesture which appears first
([29]). At the most local level, individual gestures and words are synchronized in time so that the
'stroke' (most energetic part of the gesture) occurs either with or just before the phonologically
most prominent syllable of the accompanying speech segment ([23), [29]). At the most global
level, we find that the hands of the speaker come to rest at the end of a speaking turn, before the
next speaker beginr her turn. At the intermediate level, the phenomenon of co-articulation of
gestural units is found, whereby gestures are performed rapidly, or their production is stretched
out over time, so as to synchronize with preceding and following gestures, and the speech these
gestures accompany. An example of gestural co-articulation is the relationship between the two
gestures in the phrase "do you have an ACCOUNT at this BANK?": during the word "account",
the two hands sketch a kind of box in front of the speaker; however, rather than carrying this
gesture all the way to completion (either both hands coming to rest at the end of this gesture, or
maintaining the location of the hands in space), one hand remains in the 'account' location while
the other cuts short the 'account' gesture to point at the ground while saying 'bank'. Thus, the
occurrence of the word "bank", with its accompanying gesture, affected the occurrence of the
gesture that accompanied "account".

In the next section of this paper, we outline the work that has been carried out on animation
of the face and hands, and synchronization of such systems with speech.
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3 Computer animation of conversational behaviors

3.1 Literature on Facial Control Systems

Various systems have proposed different solutions to integrate the different facial expression
functions. Most of the systems use FACS (Facial Action Coding System) as a notational system
[18]. This system is based on anatomical studies. It describes any visible facial movements. An
action unit AU, basic element of this system, describes the action produced by one or a group
of related muscles.

The multi-layer approach [20] has allowed independent control at each level of the system.
At the lowest level (geometric level), geometry of the face can be modified using free form
deformation techniques. At the highest level, facial animation can be computed from an input
utterance. At this level a high-level instruction language is providing allowing the user to
specify actions at a higher degree of abstraction (smile while saying "hello") and to perform the
corresponding animation.

In M. Patel's model [30] facial animation can also be done at different levels of representation.
It can be done either at the muscle level, at the AU level or at the script level. For each AU
the user can select starting and ending points of action, the intensity of action, the start and
end tensions and the interpolation method to compute the in-between frames.

Starting from a functional group (lip shapes, conversational signal, punctuator, regulator or
manipulator), [31] offer algorithms which incorporate synchrony, create coarticulation effects,
emotional signals, and eye and head movements. The authors generate automatically the facial
actions corresponding to an input utterance. A conversational signal (movements occurring on
accents, like raising of eyebrow) starts and ends with the accented word; while punctuator signal
(movement occurring on pause, like smiling) happens on the pause. When a blink is one of these
signals it is synchronized at the phoneme level. Head nods and shakes appear on accent and
pause. The head of the speaker turns away from the listener at the beginning of a speaking
turn and turns toward to the listener at end of a speaking turn to signal a change of turn.
Other signals such as emblems, and emotional emblems are performed consciously and must be
specified by the user.

Building a user-interface, [39] propose a categorization of facial expressions depending on
their communicative meaning. For each of the facial functions a list of facial displays is done (for
example, question mark corresponds to raising eyebrows, remembering corresponds to eyebrows
action, eye closure and one side of mouth pull back). A user talks to the 3D synthetic actor.
A speech system recognizes the words and generates an answer with the appropriate facial
displays. Grammar rules, a small vocabulary set and a specific knowledge domain are part of
the speech analysis system. The responses by the 3D actor are selected from a pre-established
set of utterances. The appropriate facial displays accompanying the answer follow the analysis
of the conventional situation (e.g. if the user's speech is not recognized the 3D actor will answer
with a "not-confident" facial display).

3.2 Literature on Gesture Animation

The computer graphics literature is rather sparse on the topic of gesture animation. Anima-
tors frequently use key parameter techniques to create arm and hand motions. Rijpkema and
Girard [35] created handshapes automatically based on the object being gripped. The Thai-
manns [19, 28] imp ted on the hand model to include much better skin models and deformations
of the finger tips and the gripped object. Lee and Kunii [24] built a system that includes hand-
shapes and simple pre-stored facial expressions for American Sign Language (ASL) synthesis.
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Dynami-s of arm gestures in ASL have been studied by Loomis et al [27]. Chen et al [9] con-
structeo a virtual human that can shake hands with an interactive participant. Lee et al [25]
automatically generate lifting gestures by considering strength and comfort measures. Moravec
and Calvert [4] constructed a system that portrays the gestural interaction between two agents
as they pass and greet one another. Behavioral parameters were set by personality attribute
"sliders" though the interaction sequence was itself pre-determined and limited to just one type
of non-verbal encounter.

No literature appears to exist on the integration of facial animation with gesture generation
in the context of intonationally correct speech.

4 Overview of system

In the current system, a model of face-to-face interaction is used to generate all of the behaviors
implemented, from the informational status of intonation to the communicative function of head
nods, gaze, and hand gestures. Additionally, however, this system implements two agents whose
verbal and nonverbal behaviors are integrated not only within turns, but across speakers.

In the remaining parts of the paper we explain the different boxes of figure 1. We start from
the top of the figure and work towards its bottom.

4.1 Dialogue Planner

The text of this dialogue may be automatically generated on the basis of a database of facts
describing the way the world works, a list of the goals of the two agents, and the set of beliefs of
those two agents about the world, including the beliefs of the agents about one another [32]. In
this instance the two agents have different beliefs about the world (George believes that he has
$50 in his account, and Gilbert does not), and goals that change over the course of the dialogue
(Gilbert comes to have the goal of helping George get $50).

Text is generated and pitch accents and phrasal melodies are placed on generated text roughly
as outlined in [38] and [33]. This I.ext is converted automatically to a form suitable for input
to the AT&T Bell Laboratories TTS synthesizer ([26]). When the dialogue is generated, the
following information is saved automatically:

* the timing of the phonemes and pauses

9 the type and place of the accents

0 the type and place of the gesture

This speech and timing information will be critical for synchronizing the facial and gestural
animation.

4.2 Symbolic Gesture Specification

Utterances are annotated according to how their semantic content could relate to a spatial
expression (literally, metaphorically, spatializeably, or not at all). Further, references to entities
are classified according to discourse status as either new to discourse and hearer (indefinites), new
to discourse but not to hearer (definites on first mention), or old (all others) [34). According to
the following rules, these annotations, together with the earlier ones, determine which concepts
will have an associated gesture. Gestures that represent something (iconics and metaphorics)
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********Slide 1: 4 frames representing 4 different gestures*********

Figure 2: Examples of symbolic gesture specification

are generated for rhematic verbal elements (roughly, information not yet spoken about) and for
hearer new references, provided that the semantic content is of an appropriate class to receive
such a gesture: words with literally spatial (or concrete) content get iconics (e.g. "checkbook"),
those with metaphorically spatial (or abstract) content get metaphorics (e.g. "plan"); words
with physically spatializeable content get deictics (e.g. "this"). Meanwhile, beat gestures are
generated for such items when the semantic content cannot be represented spatially, and are
also produced accompanying discourse new definite references (e.g. "fifty-SEVEN dollars"). If
a representational gesture is called for, the system accesses a dictionary of gestures (motion
prototypes) for concepts in order to determine the symbolic representation of the particular
gesture to be performed.

In figure 2, we see examples of how symbolic gestures are generated from discourse content.

1. "Shall we make a PLAN?"

e In the first frame, a metaphoric gesture (the common conduit gesture, representing
the plan as an entity that can be presented to the listener) is generated because of
the first mention (new to hearer) of the abstract notion 'make a plan'.

2. I suggest that you WRITE a check

* In the second frame, an iconic gesture (representing writing on a piece of paper) is
generated from the first mention of the concrete action of 'writing a check'.

3. Your account contains THREE dollars

* In the third frame, an iconic gesture (the emblematic gesture understood to mean
'three') is generated from the first mention (new to hearer) of the entity 'three dollars'.

4. three dollars is LESS than fifty dollars

* In the fourth frame, a beat gesture (a movement of the hand up and down) is gen-
erated from the first mention of the notion 'less than', which cannot" be represented
spatially.

After this gestural annotation of all gesture types, and lexicon look-up of appropriate forms
for representational gestures, information about the duration of intonational phrases (acquired in
speech genere.tion) is used to time gestures. First, all the gestures in each intonational phrase are
collected. Because of the relationship between accenting and gesturing, in this dialogue at most
one representational gesture occurs in each intonational phrase. If there is a representational
gesture, its preparation is set to begin at or before the beginning of the intonational phrase,
and to finish at or before the next gesture in the intonational phrase or the nuclear stress of the
phrase, whichever comes first. The stroke phase is then set •cide with the nuclear stress
of the phrase. Finally, the relaxation is set to begin no sc an the end of the stroke or
the end of the last beat in the intonational phrase, with the i f relaxation to occur around
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**************Slide 2: 4 frames representing the two agents in close up.******

Figure 3: Facial expressions corresponding to the utterance 'go ahead'.

the end of the intonational phrase. Beats, in contrast, are simply timed to coincide with the
stressed syllable of the word that realizes the associated concept. When these timing rules have
applied to each of the intonational phrases in the utterance, the output is a series of symbolic
gesture types and the times at which they should be performed. These instructions are used to
generate motion files that run the animation system.

4.3 Symbolic Intonation Specification

P. Ekman and his colleagues characterize the set of semantic and syntactic facial expressions
depending on their meaning [15]. Many facial functions exist (such as manipulators that cor-
respond to biological need of the face (wetting the lips); emblems and emotional emblems that
are facial expressions replacing a word, an emotion) but only some are directly linked to the
intonation of the voice. A conversational signal corresponds to the movement appearing on
an accent; a punctuator signal appears on a pause; We will illustrate the conversational signal
function by an example. Let us consider the sentence "Go ahEAd". The segment 'ea' receives
the pitch accent. The figure 3 illustrates this example. The first frame is the pronunciation of
the segment 'go'; the mouth is puckered to form the sound 'o'. The second frame corresponds
to the first phonemic segment 'a' of the word 'ahead'. Since the pitch accent is on the second
syllable, a conversational signal occurs on the word. The raising of eyebrows is a common form
of this signal as is a blink. The eyebrows start raising on the first syllable of the accented word.
The pitch of the movement corresponds to the accented vowel 'ae' and the eyes are closed for
a blink (frame 3). The last frame shows the end of the pronunciation of the word 'ahead'. The
eyebrows are back to their 'ne: , position and the eyes are open.

4.4 Arm Movement k erator

The gesture command syntax sends information about the timing, shape, and position of the
hands and arms to the animation system. The animation process produces a file of motions
to be carried out by this figure. Starting with the given gestures and their timing, constraints
imposed by the human agent's abilities and the speech rate modify the motion sequence for a
proper co-articulation effect.

The first step is the reading of data from a sequence of phonemes, intonational information,
and gestures.

This data is output in the following form.
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88 1 0 5455 5455 st(checkbook)
d 0 7 5455 5462
uu 2 9 5462 5471
88-89 0 0 5471 5471
y 0 6 5471 5477
uu 2 9 5477 5486
89-90 0 0 5486 5486
h 0 10 5486 5496
ae 1 15 5496 5511
v 0 8 5511 5519
90-91 1 0 5519 5519
y 0 6 5519 5525
uu 2 9 5525 5534
rr 0 6 5534 5540

0 75 5679 5754
In this example, the phonemes on the far left compose the phrase "do you have your" of the

utterance "Do you have your checkbook with you?" The line which concludes "st(checkbook)"
indicates which gesture will be produced during the production of the sentence; in the con-
tinuation of this utterance (not shown) the symbols "pr", "sk", and "rx" refer to preparation,
stroke, and relaxation phases of a gesture respectively. Where two gestures occur during a single
sentence, gestures are marked following the stroke or relaxation coding in the file.

In this instance, the presence of a gesture is signalled simultaneously with the preparation of
that gesture; furthermore, it follows a preceding gesture which presumably has been executed
before the signalling of a further gesture. If no gestures are signalled at the beginning of a utter-
ance, we can assume that none will occur. The remaining columns denote timing information for
each phoneme and other speech information such as accents. The fourth and fifth columns refer
to the time that each phoneme starts and ends, respectively. These are of particular interest
since these times will parameterize gesture.

Due to the structure of the conversation, where the speakers alternate turns, we assume
similar alternation in gesturing. (Gesturing by listeners is almost non-existent [29].) For the
purposes of gesture generation, phoneme information (the first three columns of the example
above) can be eliminated; however, utterance barriers, which are denoted by intonational infor-
mation in the sixth column, must be interpreted both to provide an envelope for the timing of
"a particular gesture or sequence of gestures and to determine which speaker is gesturing.

4 Once timing information has been pulled out in this manner, gestures selected by the dialogue
generator can be checked against canonical times for these gestures. In the lexicon, timing
information has been recorded for both the length of preparation time required for a gesture,
and the total execution time of a gesture. If the time available for a gesture is significant enough
to encompass these times, then a production of a complete gesture at the indicated time may
occur. For example, the gesture which accompanies the statement

"Do you have your [checkbook] with you?"
has sufficient time to execute: it is the only gesture occurring in the phrase, as is evidenced

by the timing information given in files produced by the first section. However, if this timing is
insufficient to allow for full gesture production, then the gesture must be foreshortened to allow
for the reduced available timing.

The most common reason for foreshortening is anticipation of the next gesture to be produced
in a discourse. In anticipatory co-articulation effects, most often the relaxation phase of the
foreshortened gesture and preparation phase of the next gesture become one. This process can
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be seen in the gestures accompanying the phrase
"Do you have [an account] at [this bank]?"
"[An account]" is produced .90 seconds into the phrase, and "[this bank]" is generated at

1.9 seconds. This causes some foreshortening in the relaxation process during the first gesture,
from which the second gesture is then produced. The same effect can be seen in the phrase

"I suggest that you [write a check] and [withdraw] fifty dollars from your account."
Co-articulation constraints - synchronizing the gestures with intonational phrases and sur-

rounding gestures - may actually cause the given gestures to be aborted if too little time is
available for production given the physical constraints of the human model.

Once a sequence of gestures has been selected and timing information generated, this infor-
mation must be put into a motion file (or series of motion files, in the case of a full dialogue)
which will be read by the animation software. The motion file is composed of several separate
units which take parameters such as depth, height, breadth, position, handshape, and so forth
to create gestures at any position in space. One part of the motion file generated by parsing
the sentence "Do you have [an account] at [this bank]?" follows. The lines specifying figure
(referring to which figure is gesturing), start-time, and duration are generated by parsing the
speech generation file to determine who is speaking and when the arm, wrist, or fingers begin
and stop moving.

/* Motions, #20 */ [20th utterance]
motion gesture.guyO {
figure = (figure)Gilbert;
type = "arm gesture";
starttime = 0.90sec;
duration = 0.73sec;
velocitycontrol = "constant";
weightfunction = "increase";
data = ("right", "near", "chest", "center right", 2.00);
}

motion gesture-guy_2 {
figure = (figure)Gilbert;
type = "wrist gesture";
starttime = 0.90sec;
duration = 0.73sec;
velocitycontrol = "constant";
weightfunction = "decay";

data = ("right", "forward","left", 2.00);
}

notion gestureguy_9 {
figure = (figure)Gilbert;
type = "hand gesture";
starttime : i.9Osec;
duration = 0.73sec;
velocitycontrol = "constant";
data = ("right", "D", 95.00);
}
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Files such as these accompany every utterance spoken by a figure in the animation, whether
or not they contain specifications for gesture. These :notion files are then interpreted by the
gesture animation system, described below. In cases where there is no gesture, the motion files
specify that the hands remain at rest. The rest position can be changed so that the hands
remain closer to the sides of the body, or closer to the chest. (In the video that accompanies
this paper, the rest position chosen is not optimal.)

4.5 Gesture Motion Specification

The graphics-level gesture animation system accepts gesture instructions containing information
about the location, type, timing, and handshape of individual gestures. Based on the current
location of the hands and arms in space, the system will attempt to get as close as possible to
the gesture goals in the time allowed, but may mute motions or positionings because it cannot
achieve them in time (co-articulation effects). This animation system calls upon a library of
predefined handshapes which form the primitives of hand gesture. These handshapes were
chosen to reflect the shapes most often found in gesture during conversational interaction ([231).
The animation system also calls upon separate hand, arm and wrist control mechanisms.

The gesture system is divided into three parts: hand shape, wrist control, and arm posi-
tioning. The first, hand shape, relies on an extensible library of hand shape primitives for the
basic joint positions, but allows varying degrees of relaxation towards a neutral hand position.
The speed at which the hand may change shape is also limited to allow the modelling of hand
shape co-articulation. Large changes in hand position are restricted as less time is allotted for
the hand movement, forcing faster hand gestures to smooth together. Instructions to the hand
control system may be seen in the motion file excerpt above.

The wrist control system allows the wrist to maintain and change its position independently
of what complex arm motions may be occurring. The wrist is limited within the model to a
physically realistic range of motion. Wrist direction is specified in terms of simple directions
relative to the gesturer, such as "point the fingers of the left hand forward and up, and the palm
right". Instructions to the wrist control system may be seen in the sample motion file.

The arm motion system accepts general specifications of spatial goals and drives the arms
towards those goals within the limits imposed by the arm's range of motion. The arm may be

,, positioned by using general directions like "chest-high, slightly forward, and to the far left".
Instructions to the arm control system appear in the sample motion file.

The expressiveness of an individual's gesturing can be represented by adjusting the size of the
gesture space of the graphical figure. In this way, parameters such as age (children's gestures are
larger than adults') and culture (in some cultures gestures tend to be larger) can be implemented
in the gesture animation.

4.6 Facial Movement Generator

We use Pelachaud's algorithm [31] for computing the set of facial expressions that correspond
to the set of semantic and syntactic functions 4.3. In this model, each facial expression is repre-
sented by two parameters: its time of occurrence and its type. Different speaker personalities can
be obtained by varying these two parameters. For example a persuasive p^rson can punctuate
each accented word with raising eyebrows, while another person will not. Eye behavior, which
is discussed below, is an important characteristic of a personality. For the dialogic functions we

13



if more phonemes?

call GAZE
PaT-Net XI

Figure 4: Pat-Net that synchronizes the gaze network with the dialogue at the phoneme level.

have first examined the synchrony of eye and head movement. The next sections present our
model and then show how each facial function is implemented.

4.6.1 The Underlying Coordination Model

Facial interaction between agents and synchronization of head and eye movements to the dialogue
for each agent are accomplished using Parallel Transition Networks (PaT-Nets), which allow
facial coordination rules to be encoded as simultaneously executing finite state automata. PaT-
Nets can call for action in the simulation and make state transitions either conditionally or
probabilistically. Pat-Nets are scheduled into the simulation with an operating system that
allows them to invoke or kill other PaT-Nets, sleep until a desired time or until a desired
condition is met, and synchronize with other running nets by waiting for them to finish or by
waiting on a shared semaphore.

In addition, the.PaT-Net notation is object oriented with each net defined by a class with ac-
tions and transition conditions as methods. The running networks are instances of the PaT-Net
class and can take parameters on instantiation. This notation allows Pat-Nets to be hierarchi-
cally organized and allows constructing new nets by combining existing nets or making simple
modifications to existing nets.

As an example, consider the PaT-Net in Figure 4, which synchronizes an agent's head and eye
movements with the dialog at the phoneme level. The example net defines the ProcessPhoneme
class and an instance of this class is created for each agent (one for the listener and one for
the speaker) with the agent's name as a parameter. In the wait for phoneme node, each net
instance blocks until the current phoneme ends (or until the simulation starts on startup). If
there are more phonemes the net makes a transition to the process-phoneme node where it sets
appropriate probabilities for the net's agent given the agent's current role. If there are no more
phoneme the net exits. From the process-phoneme node the net always makes a transition to
the call GAZE node, where it calls the head and eye movement PaT-Net (figure 5) and waits for
it to exit before continuing (it effectively calls the gaze PaT-Net as a subroutine since it waits
for it to finish, but PaT-Nets can run in parallel, however, when appropriate). When the GAZE
PaT-Net exits, the phoneme PaT-Net returns to the wait-for-phoneme node, where it blocks
until the speaker's current phoneme ends in the simulation.

Eye and head behaviors are implemented as specified in the following section 4.6.2 with all
face and eye movement behavior for an individual encoded in a single PaT-Net. A PaT-Net
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instance is created to control each agent with appropriate parameters. Then as agents' PaT-
Nets synchronize the agents with the dialogue and interact with the unfolding simulation they
schedule activity that achieves a complex observed interaction behavior.

4.6.2 Dialogic Functions

Eye movements can be classified into four primary categories depending on their role in the
conversation [1], [17], [10]. Eye movements:

1. feedback: are used to collect and seek feedback;

2. planning: correspond to the first phase of a turn when the speaker organizes her thoughts;

3. comment: accompany and comment speech, by occuring in parallel with accent and
emphasis;

4. control: control the communication channel and function as a synchronization signal:
responses may be demanded or suppressed by looking at the listener.

Each of these appears as a sub-network in the PaT-Net. Their behavior will be discussed below.
Figure 5 outlines the high-level PaT-Net for eye and head movement control for a single agent.
It contains the four dialogic functions, their nodes that define each function, and their associated
actions. We shall follow this figure in the forthcoming explanations.

4.6.3 Example

As an example, consider the utterance:

I disagrEE <pause>
your account contains thrEE dollars.

where capital letters (EE) correspond to accented segments.
For each phonemic segment, the PaT-Net in Figure 5 is executed for each agent (speaker

and listener, here respectively, Gilbert and George). At each node (state) the specified action
is performed and a transition is made to a new state either based on a known probability for a
pattern of activity (see Section 4.7) or on properties of the simulation. Probabilities appropriate
for each agent given the current role as listener or speaker are set for the PaT-Net before
it executes. At each turn change, the probabilities change values accordingly. The actions
performed during an utterance are described in detail below. Figure 6 shows different frames
of the animation. The top left corner represents the beginning of the turn: Gilbert says "I".
The next frame is on the accented word "disagree": Gilbert and George look at each other
and Gilbert's eyebrows start to raise to mark the accent. The third frame corresponds to the
accented phonemic segment "ee" of disagree. Different actions occur on the pitch segment: a
blink, a raising eyebrow and a head nod. The leftmost frame on the middle row represents the
'within-turn signal': Gilbert has the turn but is pausing; he looks at George. The next frame
shows the 'speaker-continuation-signal': Gilbert keeps the turn and turns his head away from
Gilbert as he starts pronouncing the second intonation phrase "your account". The last frame
on this row corresponds to "contains". On the bottom left frame, Gilbert is saying "three" which
receives a pitch accent: as previously, Gilbert blinks and raises his eyebrows, but he does not
nod since the random value corresponding to the node accent of the sub-network comment
does not exceed the given probability threshold. At the end of the turn Gilbert looks at George
while George looks up as shown in the next frame. The last frame is the beginning of the next
turn.
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Figure 5: The eye/head movement PaT-Net: actions are defined in the nodes; conditional and
probabilistic transitions occur on arcs.

-r

********Slide 3: 9 frames representing the two agents in close up.*********

Figure 6: Facial expressions and gaze behavior corresponding to: "I disagree <pause> your
account contains three dollars".
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4.6.4 Planning Phase

When a person speaks, two phases in the speech can be defined: the planning phase and the
execution phase [5]. During the planning phase the speaker looks for and defines whal she
is going to say. Throughout this phase speech is more hesitant due to concurrent cognitive
processes [12). The speaker has a tendency to look away in order to prevent an overload of
information. This phase corresponds to the Speaker-State-Signal as defined in the turn-taking
system. On the other hand, during the execution phase, the speaker knows what she is going to
say and looks more at the listener. For a short turn (duration less than 1.5 sec.), the speaker
and the listener establish eye contact [1].

For the first few phonemes of the beginning of the example utterance '(in our example it
corresponds to "I disagr"), the sub-network planning is applied. This utterance is not short so
the node short-turn is not entered. But the node begimning-turn is entered; the condition of
being in a beginning of turn is true but its probability did not allow the action speaker looks
away to be applied. Therefore the speaker (Gilbert) keeps his current gaze direction (looking at
George). On the other hand when Gilbert starts saying:

I suggest that you write a check <pause>
and withdraw fifty dollars from your account.

the node beginning-turn is entered and executed since the condition is true and the prob-
ability allows it.

4.6.5 Comment

Three functions characterize this stage. Accented or emphasized items are punctuated by facial
expressions (mainly eyebrow raising) and head nods. Glances by the speaker toward the listener
act to emphasize particular words of a phrase. The speaker gazes at the listener more also when
she asks a question. She looks up at the end of the question. During a pause by the speaker,
the listener looks up. In our example, on accented items ("disagrEE" and "thrEE"), the node
accent of the sub-network comment is reached; the actions speaker looks at the listener
and head nod are performed by Gilbert. As before, the instantiation of an action depends on
its probability. The system easily represents the parallel agent actions.

4.6.6 Control

lDialogic regulators correspond to how people take speaking turns in a conversation or ritual
meeting. Much study has been given to turn-taking systems [13]. In the control sub-network
we consider two types of signal in the turn-taking system:

1. End-of-Turn (Speaker-Turn-Signal): the speaker wants to give her turn of speaking to
the listener. The speaker turns her head toward the listener at the end of the utterance.

2. Listener-Turn-Request: the listener asks for the turn. She looks up at the speaker,
shows impatience, and so on.

In our example at the end of the utterance3 (corresponding to "dollars" here) the sub-network
control is entered. Two actions are considered. The node end of turn corresponds to action
performed by the speaker: speaker looks at listener. The other node turn request affects
the listener; the action listener looks at the speaker and up is performed.

2a beginning of a turn is defined as all the phonemes between the first one and the first accented segment.
3end of turn is defined as all the phonemes between the last accented segment and the last phonemes.
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4.6.7 Feedback

This sub-network involves the speaker and the listener. Speakers look up at grammatical pauses
to obtain feedback on how utterances are being received. The listener can emit different reaction
signals to the speaker's speech [14], [211.

A sequence of actions characterizes this sub-network:

" Speaker-Within-Turn: is used when the speaker wants tu keep her speaking turn, and
reassure herself that the listener is following. It occurs at the completion of a grammatical
clause; the speaker turns her head toward the listener. It is frequently followed by a listener
Backchannel (see below) which in turn may be followed by a Speaker-Continuation-Signal
if the speaker wants to keep her turn. This sequence of signals corresponds to the feedback
function.

"* Backchannel: is emitted by the listener after a Speaker-Within-Turn. It can consist of
the listener looking at the speaker, smiling, nodding, vocalizing, and so on.

"* Speaker-Continuation-Signal: frequently follows a Speaker-Within-Turn. In such a
case, the speaker turns her head away from tlie listener.

If the speaker doesn't emit a within-turn-signal, the listener can still emit a backchannel which
in turn may be followed by a speaker-continuation signal. But the probability of action of the
listener (emitting a backchannel) varies with the action of the listener [13]; in particular, it
decreases if no signal has occurred from the speaker. In this way the listener reacts to the
behavior of the speaker.

The two intonational phrases of our example (I agree and your account contains 3 dollars
are separated by a pause; this corresponds to a within-turn situation. The sub-network feed-
back is entered. If the probability allows it, the action speaker looks at the listener is
performed4 ). After a delay (0.2 sec., as specified by the program), the node backchannel is
reached. Once more the program checks the probabilities associated with the actions. Two
actions can happen: listener looks at the speaker and/or the listener nods. In either
case, the final step within the feedback sub-network is reached after some delay. The action
speaker looks away from the listener is then performed.

4.7 Facial Motion Specification

We discuss now the instantiation of the fa ! movements generated in a previous stage (as
discussed in 4.6). As discussed earlier, the GAZE PaT-Net in Figure 5 is run for each agent at
the beginning of every phoneme. Depending on the course taken through the GAZE network due
to probabilistic branching and environmental state, the net may commit its agent to a variety of
actions such as a head nod or a change in the gaze point. A change in the gaze is accomplished
by supplying the human model with a 3D coordinate at which to look and a time in which to
move - the scheduled motion then begins at the current point in the simulation and has the
specified duration. A head nod is accomplished by scheduling a sequence of joint motions for
the neck, supplying both the angle and the angular velocity for each nod cycle. Note that the
gaze controller schedules motions as they are necessary by reacting to the unfolding simulation
(in fact, it does this in semi-real time) and does not have to generate all motions in advance.
This makes the gaze controller easy to extend and easy to integrate with the rest of the system.

"In the case the action is not performed, the arc going to the node backchannel ib immediately traversed
without waiting for the next phonemic segment
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Different functions may be served by the same action, which differ only in their timing and
amplitude. For example, when punctuating an accent, the speaker's head nod will be of larger
amplitude than the feedback head nods emitted by the listener. Different head nod functions
may also be characterized by varying numbers of up/down cycles. For eye movement, the gaze
direction is sustained by calling for the agent to look at a pre-defined point in the environment
until a change is made by another action.

A person can have the floor talking or pausing, but loses it as soon as the other person starts
talking. There are 3 possible states per person while having the floor. If Speaker has the floor:
Speaker talks and Listener pauses, both of them are talking and both of them are pausing.
For each of these states, Speaker and Listener can gaze at each other or not. This gives us 12
possibilities, or 24 per dyad. We can then compute the probability of being in each of these
states.

Most of the nodes of the Pat-Net can be characterized by a certain set of states. For example
the occurrence of a "within-turn signal" as we defined it corresponds to the action: personl looks
at the person2 while having the floor and pausing. These state sets correspond to a sub-matrix.
We compute the probability of such sub-matrix in relation to the particular state (having the
floor and pausing) to arrive at a probability of occurrence. We do such a computation for all
the other nodes of the Pat-Net. This information is used to determine the rules and transitional
probabilities for actions in Pat-Nets.

5 Conclusions
We have described and implemented a system to automatically animate conversations between
multiple human-like agents. The conversation is created by a dialogue planner that produces
the text as well as the intonation of the utterances. The speaker/listener relationship, the text,
and the intonation in turn drive facial expressions, lip motions, eye gaze, head motion, and arm
gesture generators. The facial motion models are driven and synchronized by parallel transi-
tion networks. Coordinated arm, wrist, and hand motions are invoked to create semantically
meaningful gestures. This system is an important addition to the field of graphic animation of
autonomous agents in that, along with speech, it automatically generates appropriate timings
and synchronized motions for face, eyes, head, arms, and hands. Such important features of
real conversations are therefore not left to chance nor the intuitions of the animator. Timing,
intonation, and accents are known to be crucial components of conversational speech. Auto-
matically generating this information allows an interactive dialogue animation to be created; for
a non-real-time animation much guess-work in the construction of appropriate motions can be
avoided. The resulting motions can be used as is - as demonstrated in the accomanying video
- or the actions and timings can be used as a cognitively and physiologically justified guide to
further animator refinement of the conversation and the participants' interactions.
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Figure 1: 4 frames representing 4 different gestures.

Figure 2: 4 frames representing the two agents in close up.



Figure 3: 9 frames representing the two agents in close up.
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Abstract

We present a cache-based approach to handling the difficult problem
c{f performing visually acceptable texture resampling/filtering while ray-
tracing. While many good methods have been proposed to handle the
error introduced by ihe ray-tracing algorithm when sampling in screen
space, handling this error in texture space has been less adequately ad-
dressed. Our solution is to introduce the Convolution Mask Approxima-
tion Module (CMAM). The CMAM locally approximates the convolution
region in texture space as a set of overlapping texture triangles by us-
ing a texture sample caching system and ray tagging. Since the caching
mechanism is hidden within the CMAM, the ray-tracing algorithm itself
is unchanged while achieving an adequate level of texture filtering (area
sampling as opposed to point sampling/interpolation in texture space).
The CMAM is easily adapted to incorporate prefiltering methods such
as MIP mapping and summed-area tables as well as direct convolution
methods such as elliptical weighted average filtering.
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1 Introduction

Texture resampling is a well researched area of computer graphics. Adequate
methods exist for handling the introduction of aliasing errors while "shrinkwrap-
ping" a digital image onto the surface of a computer-generated object[6, 4, 13,
14, 18, 33, 11, 20, 17, 15]. Also, there exists a codification of the steps needed to
perform the process in an "ideal" (alias-free) manner[22, 241. These techniques
rely on area information from the rendering algorithm in order to perform their
function and the assumption is made that this information is readily available.
The renderer is expected to provide the pixel boundary in screen space and the
compound mapping (r) from texture to screen space (surface parameteriza-
tion combined with the view and screen projection). With this information the
filtering module can calculate the pixel's extent in texture space (via inverse
projection) and perform filtering within this extent. Exactly how each filtering
method uses this information is case dependent, but all the methods referenced
require some notion of the pixel's inverse projection into texture space.

Ray-tracing research has given us the ability to accomodate many optical
phenomena easily within a computer-modelled environment[32, 8, 7, 19, 28]. A
problem exists, however, in that the ray-tracing renderer neither explicitly com-
putes the pixel boundary in screen space. nor explicitly constructs the compound
mapping (the screen projection is repl: :ed by the geometric ray intersection
process). This appears to preclude using the well-established texture filtering
algorithms without changing them severely or compromising the simplicity of
the ray-tracer.

We introduce and develop the Convolution Mask Approximation Module
(CMAM) and show how this simple caching module and ray tagging system
can be used to create an approximation to the texture space filter extent (con-
volution tegion) that allows the ray-tracer to perform texture filtering without
affecting its inherent simplicity. It will also be shown that this process adds
only 0(1) volume (time x space) complexity to the cost associated with any
of the adapted texture filtering methods. We conclude with examples of how
to use the CMAM in conjunction with MIP maps[33], summed-area tables[l 1],
and the EWA filtering technique[20].

2 Applying Textures while Ray-Tracing

Applying textures while ray-tracing can be thought of as a multi-criteria sam-
pling process. Since only a finite number of rays can be cast for any image,
aliasing in screen space is always a concern - for example, undersampling the
screen space image function can allow objects to "fall between the cracks." In
addition, the presence of texture mapping means that the sample locations will

2



be used to acquire texture space information. Due to the projective native of
the ray tracing "camera" geometry and the nonlinearity of many explicit surface
parameterizations, samples that are well placed in screen space are not necessar-
ily well placed in object space or in texture space (Figure 1), therefore, essential
texture information maybe missed. Neither area sampling nor increasing the
sampling rate solves the problem.

Object Space (World)

. Surface Pararn

Texture Space (Image)

Screen Space (One Pixel)

Figure 1: Dense Screen Space Distribution: Sparse in Object and Texture Space

Area sampling requires performing exact integration over the spatial extent
of the projected pixel. No information is lost as with point sampling, but per-
forming the integration is expensive, if not intractable. Two early attempts
were made at performing this type of area sampling in a ray-style renderer:
cone-tracing[I] and beam-tracing[23]. Cone-tracing treats each ray as a cone
emanating from the chosen point and having a divergence angle. Beam-tracing
projects a bundle of rays as a polygonal beam into the scene along the direction
that the infinitesimally thin ray would travel. Both methods require many limit-
ing assumptions to be made about the environment in order to remain tractable.
These limitations drastically effect the usefulness of the technique.

Modifying the sampling rate (number of rays processed), using statistically
significant samples in an attempt to adequately sample in screen or texture
space, can minimize the affects of aliasing energy but does not remove the
energy[12, 25, 7, 28]. Since a good portion of the ray-tracer's running time can be
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attributed to intersection calculations[32] adding extra samples can significantly
affect a ray-tracer's performance. It turns out that many computer graphics
textures require an infinite sampling rate to be sampled adequately.

Rather than modifying the sampling rate or allowing the limiting assump-
tions of an area sampling ray-style renderer, our solution follows from texture
filtering research by using a modified point/area sampling method based on a
local set of known texture locations. This requires keeping a window of infor-
mation on the texture sampling pattern for each textured object.

3 Constructing the Convolution Region in Tex-
ture Space

The pixel's texture space extent (convolution region) is constructed by project-
ing the pixel's boundary points into texture space (Figure 2). A ray-tracing
algorithm could do this by firing rays through the corners of the pixel and
then mapping the intersection points via the surface parameterization. This

Object SpaceIProjection of Pixel

into Texture Space

via Inverse Compound

Mapping

Texture Space

Screen Space

Figure 2: Convolution Region: Pixel Projection

solution suffers from limitations[l, 23] due to the coupling of the rays and
also precludes using any of the simple, stochastic approaches to screen-space
antialiasing[12, 25, 7, 28]. The rays can still be treated independently if one
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is willing to redefine the manner in which the convolution region is defined
(constructed).

* o . Ray Intersection/

Surface Param

Texture Space

Screen Space (One Pixel)

Figure 3: Convolution Region: Convex Hull of Texture Point Samples

If we modify the definition of the convolution region to include that area of
texture space inside the convex hull of a set of texture space point samples (Fig-
ure 3), an incremental approach to texture filtering while ray-tracing evolves.

s3

2 80

.2

Adding s3 Incrementally

Build the Convex

Hull of the Convolution

Region in Texture Space

Figure 4: Incremental Construction of the Convolution Region

Our incremental convex hull fitering method approximates the filtering re-
gion in texture space as a set of (possibly) overlapping texture triangles (Figure
4). The current sample location along with the two previous sample locations
(provided the rays emanate from the same pixel) are used to give a local ap-
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proximation to the texture area that needs to be filtered for this sample. This
overestimates the convolution region by allowing for the inclusion of a texture
sample more than once, but guarantees that only those samples inside the convex
hull are included in the filtering operation. A non-incremental approach is not
as useful because every point sample of texture space cannot easily/accurately
be associated with a filtered texture intensity (filter values are only associated
witi, areas incrementally bound by the point samples).

3.1 Caching and the Convolution Mask Approximation
Module

Object Space (x,yz)

4
Surface Parameterization

Texture Space (u,v)

4
CMAM Texture Access,-*,* Texture Image

Filtered Texture Intensity

Figure 5: Placement of the Convolution Mask Approximation Module

The convolution mask approximation module (CMAM' is a data structure
and a set of routines that resides between the texture image (or data structure)
and the surface parameterization (Figure 5) and implements the methodology
described above.

typedef float Color[COLOILSPAC9];

typedef struct um {
/e Flag for turning CQU filtering on a/
int filter;

/I Ray IDa of cached samples e/
int last-id, sec-lanstd;

/e Recursion levels of cached samples e/
iut last-level, sec-last.level;

/* Sample (u,v) of cached samples */
float last-u, sec.-laatu;
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float last.., sacilast..,;

/* Texture data structure */
Color **map;

/* Bounds of texture array */
int rows, cola;

} Cmau, oCaamptr;

Filter

last.id seclast-id

lastievel sec-last-level

Texture Image or

astau sec.Jast.u Prefiltering

Data Structure

Iast..V seciast..v

map

rows cola

Figure 6: CMAM and Associated Texture Data Structure

Instead of having the ray-tracer accessing the texture image directly and
performing filtering itself, the CMAM takes the texture location, and returns
the filtered texture value to the ray-tracer.

The convolution region is approximated as above with ray tagging being used
to facilitate the process of finding related rays. Rays which are fired through
pixels on the same scanline in screen space, and might ultimately be used to
bound a region in texture space, are given the same ID and a starting recur-
sion level of zero. IDs, levels, and sample locations are passed to the CMAM
which compares them with the most recent CMAM accesses. ID matching facil-
itates the incremental building of the convolution area along the scanline. Level
matching allows the accumulation of texture area information treating proxi-

7
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Figure 7: CMAM Approximation of Overlapping Texture Triangles

mate groups of reflected/refracted rays as an approximation to the travelling
wavefront[l, 23]. If the IDs and levels match then the regic , bounded by the
samples in texture space is part of an approximation to the true convolution
region.

The CMAM then can use known filtering techniques such as MIP mapping,
summed-area tables or an EWA scheme to filter the area and return a texture
intensity (without any interdependence of the rays). No changes to the basic
ray-tracing implementation are necessary. The ray-tracer acts as if it is point
sampling in texture space.

3.2 Using the CMAM with Existing Techniques

How the CMAM uses its local approximation of the convolution region is specific
to the type of texture filtering that is going to be performed. MIP mapping,
summed-area tables, and EWA filtering require their convolution regions to be
described in different ways. When the texture sample is sent to the CMAM the
ID is checked against the cached values. This current ID can match the IDs of
both the cached samples, the ID of the most recently sample only, or any of the
IDs in the cache. The problem then reduces to generating an area based on the
number of cache hits counted and the texture space sampling pattern.

3.2.1 MIP Map Approximation

S• ' q8



Zve" Cack. Hiss 0* C-che Hit Twe C.che Hits

Figure 8: MIP Map Approximation Using the CMAM

Williams' MIP mapping[33] performs texture filtering by accessing a pre-
filtered texture pyramid and performing trilinear interpolation. The pyramid is
accessed with a d parameter which chooses the two levels which best approxi-
mate the filtered region. Intra-level access is via the texture coordinate (u, v)
and uses bilinear interpolation to reconstruct the texture value within the levels.
The only hard part seems to be constructing d using the CMAM.

We us the following MIP map level approximation algorithm.

1. If the sample does not match the most recent sample, use the highest
level of the pyramid (the average intensity of the texture image) to trade
blurring for aliasing (texture image with high frequencies), or use the
lowest level of the pyramid (point sample) to trade aliasing for blurring
(texture image with high frequencies).

d=0 or d=MAXLEVEL

Point sampling trades aliasing for blurring, while using the fully averaged
teiture image trades blurring for aliasing. Since the human visual susterm
is more tolerent of blurring than aliasing, we chose to use the averaged
texture image.

2. If the sample matches the most recent sample use the length of the line
between the two samples in the following calculation:

d = lg(length of line between samples)

3. If the sample matches the both cached samples, fit an axis-aligned bound-
ing box around the three samples. Use the length of the diagonal of this
bounding box in the same calculation as above.

d = lg(length of diagonal of bounding box)

9
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Figure 9: Summed-Area Table Approximation Using the CMAM

3.2.2 Summed-Area Table Approximation

The summed-area table[Il] is not restricted to filtering square regions in
texture space. It is accessed using the corners of the axis-aligned rectangular
region that is to be convolved with a box or Gaussian filter. The summed-area
table access is simple for the CMAM.

1. If the sample does not match the most recent sample, use the texture
space coordinate to either point sample or average the region from the
origin of the summed-area table to the texture coordinate (same criteria
as mentioned above).

2. If the sample matches the most recent sample use the two texture space
coordinates to create a rectangular region to be filtered using the summed-
area table.

3. If the sample matches the both the cached samples, fit an axis-aligned
bounding box around the three samples. Use the upper-right and lower-
left coordinates to access the summed-area table.

3.2.3 EWA Approximation

The EWA algorithm[20] is a direct convolution algorithm (not prefiltering)
"and requires the semi-major and semi-minor axes of a texture space elliptical
filtering region as well as a warped filter function. Since the ray-tracer lacks the
inverse compound mapping -r , computing the warped filter function can only
be approximated. The axes for the texture space ellipse and the filter kernel
access can be done as follows:

1. No matchps uses point sampling as with MIP maps or summed-area tables.

2. If the sample matches the most recent sample use the two texture space
coordinates to create a line which represents the radius of a texture space

10
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Figure 10: EWA Approximation Using the CMAM

circle (degenerate ellipse). For each texture sample contained within the
circle, use its distance from the center to access a circular symmetric filter
kernal and weight the sample accordingly.

3. If the sample matches both the cached samples, use the vector from the
current sample to one of the cached samples that is the longest as the
semi-major axis of he texture space ellipse and the vector between the
current point and the other cached sample as the semi-minor axis of the
ellipse. The circularly symmetric filter kernel can then be accessed by the
distance from the center of the ellipse to the sample, normalized by the
distance from the center of the ellipse to the boundary of the ellipse that
runs through the sample point and its value used to weight the samples
within the texture space ellipse.

4 Convex Hull Weighting

Since the CMAM caches only the last two texture samples it is possible that the
area bounding the three most recent samples overlaps a region of the texture
image that already has been included in the final filtered intensity for the current
pixel. We have begun to investgate a method for incorporating the convex hull
of the union of all the approximated convolutions into the CMAM. When a
region is to be filtered, the region is differenced with the convex hull to return
that part of the convolution region which has not yet been incorporated into the
filtered texture intensity (the DC value of the texture image is returned if the
current region is completely enclosed within the convex hull of the approximate
convolution region). This type of weighting will include each element of the
texture image (within the true convolution region) at most once in the final
filtered intensity, thereby yielding a better approximation to the true texture
intensity.

11



5 Conclusion

The convolution mask approximation module provides a caching system which
is useful for approximating the texture space extent of the screen space filter
kernel. It uses ray coherence to locally approximate the filter extent as a set of
triangular regions that tile areas of the true convolution region. Filtering then
becomes possible using these areas to access either prefiltered data structures or
a direct convolution filtering algorithm[33, 11, 20]. With the use of the CMAM
we are able to perform texture filtering without changing the simplicity of the
basic ray-tracing implementation or limiting any of its photo-realistic features.
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Figure 11: Test Scene 1 with OMAM on
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Figure 12: Test Scene 1 with CMAM off
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Figure 13: Test Scene 2 with CMAM on
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Figure 14: Test Scene 2 with CMAM off
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Figure 15: Test Scene 3 with CMAM on
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Figure 16: Test Scene 3 with CMAM off
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Figure 17: Test Scene 4 with CMAM on
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Figure 18: Test Scene 4 with CMAM off
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Abstract 1 Introduction
This paper develops a new general approach for the Modeling realistically and accurately scenes involving
modeling and animation of viscous incompressible flu- fluid simulations and especially water for graphics ap-
ids. We use the full time-dependent Navier-Stokes plications is a challenging problem that has captured
equations to comprehensively simulate 2D and 3D in- the attention of several researchers [17, 10, 15, 5, 19,
compressible fluid phenomena. Unlike previous fluid 11, 8]. These techniques whether suitable for still im-
animation graphics techniques which were based on ap- ages or animations are characterized by the use of ap-
proximating solutions to fluid motion, the use of theseequaion acuratly odes shllo ordeepflud fow, proximating techniques for simulating fluids. Further-equations accurately models shallow or deep fluid flow, more, they model a restricted range of fluid phenom-
transient dynamic flow, vorticity and splashing in simu- more they ol restic ang offuid phenomlate phsicl eviromens. n or siulaion wecan ena. Among others, realistic and accurate, splashing,

vorticity, three-dimensional flows, transient fluid dy-lated physical environm ents. In our sim ulations we can otc y, hred m ni al f ws t a set fud d -
also include variously shaped and spaced static or mov-ing obstacles that are fully submerged or penetrate the naxmcs, static and dynamic obstacles can't be handled.

flid obsuacl. Whatre fus y stabl merical arpenalys theh Modeling of the above phenomena and related fluid ef-fluid surface. We use stable numerical analysis tech- fects are becoming increasingly necessary in fluid an-
niques based on finite-differences for the solution of imations. This paper addresi ess the above problemsthe Navier-Stokes equations. We solve these equations imtosThsperadseshebverblsbye iterating an quaitia s s et of v pressu ese andelatiens based on the use of the Navier-Stokes differential equa-
by iterating an initial set of pressures and velocities tions to model fluid motion. Furthermore, through thedefined over the finite-difference grid. To model free- use of numerical analysis techniques the computational
surface fluids, we present a powerful technique which time required for the complex simulations in this paper
isis between fifteen minutes to two hours on a standard
the fluid's pressure and velocities obtained from the Silicon Graphics Crimson workstation.
solution of the Navier-Stokes equations this technique In [11] and p techniques for producing still images
allows modeling of the fluid's free surface either by based on Fourier synthesis and stochastic subdivision,
solving a surface equation or by tracking the motion respectively, were developed. Among the first methods
of marker particles. The later technique is suitable for fluid animation were techniques for modeling waves
for visualization of splashing and vorticity. Further- [19, 17, 16] i techniquesror boe
more, we develop an editing tool for easy definition of aries. In (15, 5, 19T more sophisticated techniques for
a physical-world which includes obstacles, boundaries wave mo re sophisticte tech ior
and fluid properties such as viscosity, initial velocity of modeling were developed due to the introductionand ressre.Usin ou edior e ca peformcomrefraction resulting in changes to wave velocity withand pressure. Using our editor we can perform com- depth. The basic idea behind these papers was the
plex fluid simulations without prior knowledge of the use of particles moving in a restricted way (circular orunderlying on the api ation we d epend ellipsoidal) around their initial positions. As a result,ing on the application we render the fluid's surface us- even though they could simulate phenomena like waves
mng well-developed graphics techniques and standard ee huhte ol iuaepeoealk aeg workstation hardareiroutenines, anhitting a beach they could not handle more complex an-SGI workstation hardware routines. imations like wave reflections, changes in the topology
Category: Research paper, Format: Regular pa- of the water and raindrops hitting surfaces. In order
per. to overcome the above limitations, Kass and Miller (8]

introduce a simple and very efficient technique for sim-
Keywords: Dynamic Fluid Simulations, Physics- ulating water based on the solution of a set of partial
Based Modeling, Transient Dynamics, Free-surface differential equations which approximate the shallow
Flow, Navier-Stokes Equations, Boundaries, Buoyancy, water equations. Through their method, the water
Finite Difference. surface is represented as a height field which evolves

over time based on the integration of the above shal-
low water differential equations. Finally, to reduce the
complexity of three dimensional water animations, they
approximate the three-dimensional equations with a se-
ries of two-dimensional shallow water equations. Meth-
ods based on particles systems [13, 21] have also been
used for approximating the modeling of wave propa-



gation. Their main limitations are the lack of realis- 2 Navier-Stokes Equations
tic three dimensional wave animations, ease of surface
rendering, instability, control and difficulty to simulate The Navier-Stokes equations for viscous incompress-if alarg numer o the is ible fluids are the following set of three-dimensional
correctly vorticity, even ifdifferential equations which model the conservation of
used. All of the above graphics techniques for sim- momentum
ulating fluid phenomena are based on simplified fluid momentum
models which are sufficient for a limited set of fluid au + 82 a 8uv + -8p + + 8 2 u + 2U +

2 u
simulations described above. There is an increasing de- at + ax + z -x( + 2 + 8-2

mand though in fluid animations for more realistic and 9 09V 8v 2  avw ap 2V 82v 8 2 v
pleasing animations, modeling of complex phenomena t + -s- + - + "-" = - + +
such as vorticity and splashing, and inclusion of static z a ju 8+ 8

2W

and dynamic objects in fluid simulations. + = - + 20,•• , 2, _ 2 w 0
In this paper we develop a new general approach for Tt + -5+S + + -- T

modeling and animation of a superset of fluid phenom-
ena compared to previous techniques. We use the full (1)
time-dependent Navier-Stokes equations t4] to compre-
hensively simulate 2D and 3D incompressible fluid phe- and mass au &v aw
nomena. These equations accurately model shallow or - + 7 + T = 08:
deep fluid flow, transient dynamic flow, vorticity and
splashing in simulated physical environments. In our in fluid flow. p is the ratio of pressure to constant den-
simulations we can also include variously shaped and sity, g,, g, g9, are prescribed body accelerations (e.g.,
spaced static or moving obstacles that are fully sub- gravity), v is the coefficient of kinematic viscosity, and
merged, penetrate or float on the fluid surface. We use u, v, w are the fluid velocities in the z, y and z dimen-
stable numerical analysis techniques based on finite- sions, respectively.
differences for the solution of the Navier-Stokes equa-
tions. We solve these equations by iterating an initial 3 Discretization
set of pressures and velocities defined over the finite-
difference grid. Our technique does not require the There are several ways to solve numerically those com-
solution of large linear systems at every iteration mak- plex nonlinear differential equations 14]. In this paper
ing the solution significantly more efficient to standard we use a finite-difference approximation to these equa-
ways of solving the above equations. tions called the Marker and Cell method [4] due to its

simplicity and suitability for free surface modeling. In
To model free-surface fluids, we present a technique this approach we divide the region in which we do the

which is based on the Marker-and-Cell method [6, 4]. computations into a set of small rectangular cells hay-
Based on the fluid's pressure and velocities obtained ing edge lengths 6:, 6y, and 6z. With respect to this
from the solution of the Navier-Stokes equations this set of computational cells, we define velocity compo-
technique allows modeling of the fluid's free surface ei- nents on cell faces and pressure values at cell centers
ther by solving a differential equation for the surface's as shown in Fig. 1. We label cells with an index (i, j, k),
height or by tracking the motion of marker particles. which denotes the cell number as counted from the ori-
Marker particles follow the fluid according to the veloc- gin in the x, y, and z directions, respectively. Also
ity components in their vicinity obtained from the solu- vfl is the prss, an z dection cely Als
tion of the Navier-Stokes equations. We use them only pi1,k is the pressure at the center of cell (i, t, k), while
for the purpose of indicating fluid configuration and fa+c/2ek is the -direction velocity at the center of the
they do not participate in the velocity and pressure a- face between cells (,j, k) and (i + 1,j, k). We number
culation. They show which cells in the finite-difference similarly the velocities in the y and z directions.
grid contain fluid and especially which cells lie along We obtain a a time dependent solution by advanc-

the free surface. They also serve as a flow visualization ing the flow field variables through a sequence of short

coordinate system whereby fluid element trajectories time steps of duration 6t. We then break the calcu-

and relative positions can be observed. Therefore, we lation of the advancement for one step in two stages.
use them for visualizing splashing and vorticity within First we update all the velocity components using the
a fluid. previous state of the flow to calculate the accelerations

caused by convection, viscous stresses, body forces, etc.
Furthermore, we develop an editing tool for easy def- This first stage consists of an explicit velocity calcula-

inition by a user of a physical-world which includes tion. This computation though does not necessarily
obstacles, boundaries and fluid properties such as vis- lead to a velocity field with zero divergence, that is to
cosity, initial velocity and pressure. Using our editor one that conserves mass. Therefore, in stage two ad-
we can then perform complex fluid simulations without justments must be made to insure mass conservation.
knowledge of the underlying fluid dynamic equations. We do so by adjusting the pressure in each cell in such
Finally, depending on the application we render the a way that there is no net mass flow in or out of the
fluid's surface using well-developed graphics techniques cell. A change in one cell will affect neighboring cells
and standard SGI workstation hardware routines, so that this pressure adjustment must be performed it-

In the following sections we present the details of our eratively until all cells have simultaneously achieved a
technique and demonstrate its power with a number of zero mass change. In the second stage we adopt a tech-
experiments, nique developed by Chorin [3] in which a simultaneous
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Serages, e.g., Us,j,k = P(ui+1/2.,k + Ui-1/2jk), and the
square of a quantity, e.g., u2 at (i,j,k) is the square
of the average, (ui,j,k))2 , rather than the average of the
squares, ui.l 12 j and

3.2 Stage 2

Since equations (3) are the finite difference approxima-
U d. tion of (1), they do not necessarily result in a velocity

field that satisfies (2). To ensure mass conservation we
apply an iterative process in which the cell pressures
are modified to make the velocity divergence vanish.
In each cell (ij, k) the value of the velocity divergence
D is calculated as

D,,jk = (1/bX)(U.+1/2j,k - u,-1/ 2 ,3 k) + (0/b)(v,j+1/2,k -

x V",--1/2,k) + (1/ 6 z)(w•,j,k+l/2 - w,,,k--l/ 2 ). (4)

Figure 1: Location of velocity components on a typical If the magnitude of D is less than some prescribed small
cell (i, j, k). value i (in this paper we used 10-'), the flow is locally

incompressible and no change in the cell velocity is nec-essary. However, if the magnitude of D is larger than
esay tH owvri the prsue mscagnitued ofDislrerta

iteration on pressures and velocities is performed. This cthen the pressure is changed by
technique simplifies the application of boundary condi- 6p = -PD, (5)
tions. where 6 is given by
3.1 Stage 1
We advance explicitly the velocities in stage one, which 0 = 3o/26t(-L + - + (6)
results in quantities labeled by tildes based on the fol-

lowing formulas which are a finite-difference approxi- The constant flo is a relaxation factor, where overelax-
mation to (1). ation and underelaxation correspond to #0 greater than

or less than unity, respectively. For iteration stability
Uiil/24,k '= ui+1/2,j,k + 6t{(1/6zM(a&,,k)2 

- (U+1,,,k) 2
] it is necessary to keep 13o < 2. In our applications we

+(1/bV V)(,+1l2.J_1/2.k - ((U)i+/2j+12.t used the value #i0 = 1.6, but the value of fl0 giving
+(I/6z)[( i)+|1/2,k-1/2 - (U•,)s+1lj,+1•2l] + OX the most rapid convergence can only be determined by

experimentation [4].
+(1/6T)(Pjk - P Jk,) + (|,/6-)(Ui+3/2jk Once we calculate 6p for a cell (i, j, k) we add it to
-2ui+ I /2,j,k + U•i/2.,k) + (l/6V 2)(U,+,1 2 +,,2  the pressure pij,k and we adjust the velocity compo-
-2u,+ /2.j,k + U,+1/2.-..1,k) + (&/6Z2)(U,+1/2j,+1 nents on the sides of cell (i, j, k) based on the following

-
2 u,+1/2,,,k + U,+2/2j,k•,•1 formulas

tij+1/2,k = •,).+1/2,k + 6t{(1/&)[(tRu)i-.,1 2 J+,+2,& U,+1/2,,,k = Ui+1•/2.,k + (6t/6X)6p,

-(u)s+1/2,J+1/2,k1 + (0/6V)[(Vii,) 2 
- (_vj+,4, )2 ] Ui-./ 2,,k = U-1/2,j,k - (6t/6x)6p,

+(1/6z)t(t'v),,+1l 2 ,k--1/2 - (vD)i..÷1/2,k+1/2] +r D tiJ1+j1/2,k = 'Jj+1/2,k + (+/WA)p,

+(1/6V)(P•,• - Pij+i,k) %,J.--1/2,k f 
tV,:j-1/2,k - (64t/60)•,

+('62(+jJ2k- 
2 v'ej+1/2,k + Vi,1j2J+/2.k) Wi,j,k+1/2 =Wij,k+1/2 + (16/6z)P,

J(./6y2)(ViJ ÷312,k -
2
Vi,-+1/2,k + %1Ji-112,h) WtV,,,k-./2 = lIij,k-1/2 - (6t/6z)Op, (7)

+(-/6Z2)(V,+12,k+ - 2v,,,j+i12 ,k + ViJ+1/2 , 1 )}, We then repeat this process successively until no cell
has a magnitude of D greater than c. When the it-

Zi,,,k+1/2 -"M Ui~jJg1/2 + 6t{(1/6X)[(I .1/2,jk+1,2 eration has converged (it usually takes approximately
-(Utn),l/2J,,k+2/]1+ (1/6)(v)i?-,hj-l,2,k+l/2 5 iterations) the adjusted velocities satisfy the mass-

-(-)j+1/, 2 ,+,// 2 ] + (1/6z)[(w,,,&) 2 _ (W,.,,k+1) 2 ] +9 9 conservation equation (2) and this completes the nec-
essary calculations for advancing the flow field through

S(1/P)(P ,,i., -pJk+) one cycle in time.
+(•,•6X2 )(w-+ 1,,k+ 2 /2 - 2wj,,,k+ 1 /2 + W,•.SI.k+ 1 /2)

+(4 •)(-iJ+2,#++•12 -
2 w,.,,k+1/2 + WiJ-l,k+2/ 2 ) 4 Free Surface Calculation

+(,/6Z2 )(W.j,h++/2 -
2 Ws,j,,+1/2 + Sj,,.k-1/2)). (3) In fluid applications which include free surfaces which

are single-valued (e.g., rivers, lakes, oceans, no splash-
We calculate the velocities and pressures needed at lo- ing waves), the height of the free surface can be dynam-
cations other than where they are defined as simple av- ically computed from the velocities computed through
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the Navier-Stokes equations. Through this technique Fluid Side Outside
the surface height (computed from the bottom of the v v
mesh) is defined at the center of each vertical column of M 0
cells in the three-dimensional mesh. The change in the
local surface elevation is determined by the local fluid /
velocity, that is, by the vertical component of the fluid P " u 'p
motion plus the horizontal convection of the surface
elevation from adjacent cell columns,

8h 8h Ah
- = w-u(F) - V(-). (8)at S' I 8

When a finite difference approximation is used, the Wall
above equation is numerically unstable due to a nepa-
tive diffusion truncation error [4]. We compensate this Figure 2: Free-Slip boundary conditions
error by adding to the surface height equation a posi-
tive diffusion term

V(
2 h a 2 h) In this technique, marker particles are initially

"v( + '), (9) placed in the cells containing fluid and they are subse-
8x2 8 2 quently moved with local velocity. A linear interpola-

where -t is a constant diffusion coefficient, chosen as tion is performed to calculate the velocity with which a
particle should move. The interpolation weighting de-SLmax(, V 2), (10) pends upon the distance of the particle from the near-

2> - est velocity points in the mesh of cells. A cell with no

to ensure stability. In our paper we used a value of parker particles is considered to contain no fluid. A cell
7 = 1.2. Based on the above equations (8) and (9), with marker particles, lying adjacent to an empty cell,

the finite difference form (space-centered and forward is called a surface cell. All other cells with particles are

in time) of the kinematic surface equation is considered to be filled with fluid.

h't" = h,1 + 6tfc'+ht - ,ut+61 + 6 Boundariesij 46, Ui/2.,k +We distinguish two kinds of boundary conditions.
ht tI t + Vt+6 1 • ¢ L

( - -h+ •) •,(:J+ /2,k e-1/2., 1. Rigid Boundaries associated with fully or partially
(ht, submerged obstacles, enclosing rigid walls, inflow

(._2 - h.) + [-y[ -(h!+I. - 2h,'j + hk_1, ) o b l oi d sn
6 2  a outflow,

+-L(h!.j+l - 2h!', + h:,3-1)]}, (11) 2. Free Surface boundary conditions.
For each boundary type we compute the boundary con-

where the indices i, j, k refer to the cell in which the ditions as follows.
surface is located and fv- - - k is the z component of the

velocity vector at the surace and is calculated by linear 6.1 Rigid Boundary Conditions
interpolation between the w-velocity at the top and We consider two kinds of rigid boundary conditions
bottom faces of the surface cell. which are applied at the walls of the computing finite-

5 Visualization of Splashing, and Fluid Con- difference mesh.

figuration 1. Rigid wall boundaries include fully or partially
submerged obstacles and enclosing rigid walls. A

Even though the Navier-Stokes equations are the phys- rigid wall may be either of two types, no-slip or
" ically correct model for fluid motion, additional visual- free-slip.

ization techniques need to be developed in cases where
the fluid surface is not single-valued (e.g., splashing) or 2. Inflow or outflow boundaries.
in order to visualize the fluid configuration (e.g., vor- We now list the above four types of boundary condi-
ticity, flow). In those situations, we use a technique tions and the associated velocity and pressure calcula-
[4] which allows keeping track of fluid posit tion equations for the case of a two-dimensional flow
technique supplies a coordinate system of marker par- with velocities u and v along the z and y axes respec-
tides whose trajectories follow the motions of elements tively. The above calculation of boundary conditions
throughout the fluid. It must be emphasized that the can be similarly derived for the three-dimensional case.
marker particles which we introduce into the incom-
pressible fluid flow calculation are only for the purpose 1. Free-slip boundaries. A free-slip boundary repre-
of indicating fluid configuration. They show which cells sents a plane of symmetry or a non-adhering sur-
contain fluid and especially which cells lie along the free face that exerts no drag upon the fluid. For a
surface. They also serve as a flow visualization coor- free-slip boundary, normal velocity reverses while
dinate system whereby fluid element trajectories and tangential velocity remains the same. Also the
relative positions can be observed, normal velocity component, u, vanishes at the wall
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Fluid Side Outside av/9y to both vanish separately; that is each vacuum-
side velocity is set equal to the velocity on the side of

V2  -v 2 the cell across from it. This also satisfies D = 0. A cell
S - I- with three sides facing vacuum is relatively rare. The

P1  p vacuum side opposite the fluid side is made to carry the
u M on u velocity of that side; the other two vacuum sides which

u--O oppose each other are calculated to follow freely the ef-
4 =fects of the body force and do not otherwise change. A

surface cell with four sides towards the vacuum is simi-
v1  -v1  larly treated so that this isolated drop follows a free-fall

trajectory. Finally, the pressure boundary condition at
the free surface is computed by equating it to the ap-

Wall plied external pressure.

Figure 3: No-Slip boundary conditions 7 Buoyancy

Given that at every iteration we have a complete set of
as shown in Fig. 2. Therefore, in the above dia- velocities and pressures, we can use them to simulate
gram v' = v. Also the boundary condition for the floating dynamic objects. In particular, we assume that
pressure is p' = p ± g~6z. The sign is "+" if the each rigid object is discretized and consists of a set of
fluid lies to the left of the wall and "-" if it lies nodes ni. For each model surface node ni which is
to the right. For a horizontal wall p' = p ± gy6y, within the fluid, we compute the force acting on this
where the sign is "+" if the fluid lies below the node based on the following formula [4]
wall and "-" if the fluid lies above. = -VpidV, + mjg, (14)

2. No-slip boundaries. A no-slip boundary represents where dVi is a volume associated with the submerged
a viscous boundary that exerts a drag upon the whe
fluid. For a no-slip boundary normal velocity re- node of the object and Vpo is the gradient vector of
mains the same, while tangential velocity reverses the pressure and each component of it is computed in
For a vertical wall the pressure boundary condi- discrete form by the following formula
tions (see Fig. 3) are given by (Vpi)j = Pn. - Pn,j j = z, y, z, (15)

pl = P, .l: g;6z ± (2vul/6z), (12) bj

where p,, is the pressure of the cell where the location
where the sign is "+" for fluid to the left of the of ni is and p.,j is the location of the previous cell
wall and "-" for fluid to the right of the wall. If from the one where ni is in the j direction. Also, g is
the wall is horizontal then the gravitational acceleration and rni is the nodal mass

assuming lumped masses. The total force on the object
p' = Pi . gy6y : (2vvi/6y), (13) due to the fluid motion and gravity is given in discrete

form by
where the sip is "+" for fluid below the wall and
"-" for fluid above the wall.

3. Inflow boundaries. An inflow boundary allows the
fluid to move into the system at a prescribed rate, Based on the total force acting on each node, we com-
i.e., U = Uprescibd (see the above two figures), pute the generalized external forces f, (total force and
while the tangential velocity reverses, torque acting on the object) as demonstrated in [12]

4. Oulflow boundaries. An outflow boundary allows and we compute its motion based on the Lagrange
fluid to pass out of the system at its own chosen equations of motion
rate, i.e., i = Vi' (see the above two figures), while Mq + Dq = fq + g9, (17)the tangential velocity remains the same. where M and D are the object's generalized mass and

damping matrices, and gq are the generalized coriolis
6.2 Free Surface Boundary Conditions and centrifugal forces.
Velocity boundary conditions at a free surface are In order to handle collisions of the floating objects
based upon the requirement that D = 0 for surface with static obstacles, we also apply the techniques de-
cells. The easiest way to discuss is that of a two- veloped in [12] for collision detection and collision force
dimensional surface cell which faces vacuum on only computation.
one side. Velocities for the other three sides are cal- The floating objects that we use in our examples
culated in the usual manner, and that of the fourth are small compared to the mesh size and therefore we
side follows uniquely from the vanishing of D. Surface make the simplifying assumption that they do not af-
cells with two sides towards the vacuum are treated fect the water flow seriously. Otherwise, more sophis-
somewhat differently. For them we require Ou/4z and ticated techniques need to be employed.
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8 Numerical Stability Conditions have a height filed. Otherwise, we just draw particles
The first condition that is necessary to be satisfied to for visualization of splashing and vorticity.
Tchieve fi merst al con tabion i that ie ne say tabe atisfuied o We also develop an editing tool for easy definition
achieve numerical stability is that the distance the fluid by a user of a physical-world which includes obstacles,
travels in one time increment must be less than one boundaries and fluid properties such as viscosity, ini-
space increment which results in tial velocity and pressure. Using our editor we can then

< x Sy 6: (18) perform complex fluid simulations without knowledge
6i < m (-u, -, •-). (18) of the underlying fluid dynamic equations. The first

animation in the videotape shows the use of the edi-

Two additional kinds of instability which are related tor to construct the physical environment for the an-
to the occurrence of truncation errors and have the imation shown in Figure 5 including the definition of
form of "negative" diffusion require choosing a value of boundaries and fluid properties such as viscosity.
viscosity large enough to satisfy the condition Figure 4 shows several frames from a 2D anima-

u2 5+ 6 2 
&U) (tion of a splashing drop into a pool of milk-like liq-
-), •uid. The walls enclosing the liquid are free-slip, the

2 2 &x 2 2 ( +" grid size is 40 x 60 and the calculation time including
(6t + 6z2 

8W)] the graphics took 20 minutes. Throughout the anima-
2 2 8z tion, marker particles are used to visualize the splash-

ing. Figure 4(a) shows the initial configuration with
Finally, in case of viscous fluid simulations (i.e., v the drop above the liquid. Figure 4(b) shows a frame
is large) the condition necessary to insure stability from the initial splash of the drop in the liquid creat-
through successive time steps is ing a crater, while Figure 4(c) shows a frame from the

I1I 1 1 liquid rebounding to cover the crater and creating an
& 1bt < j(7.2 + - -+ - (20) upward indentation.

26< +Figure 5 shows several frames from a 2D animation of

9 Algorithm a water jet splashing into a concrete tank. The walls of
the tank are no-slip, the grid size is 40 x 60 and the cal-

In summary our algorithm for the solution of the culation time including the graphics took 15 minutes.
Navier-Stokes equations including the boundary con- The water flows from an inflow type boundary marked
ditions can be summarized by the following steps if in red. Throughout the animation, marker particles are
marker particles are used used to visualize the splashing. This simulation took

* Algorithm less time to compute than the previous, which is sim-
pler, due to the fact that we used a smaller number of

1. Examine the location of the marker particles particles. By comparing images from both animations
and identify the surface cells. the marker density in the second animation is obviously

2. Set-up the boundary conditions. smaller. Figure 5(a) shows a frame from the water jet

3. Compute fi, i, t6 for all the cells which contain before it hits the bottom of the tank. Figure 5(b) shows

fluid. a frame from the initial splash of the water jet to the
bottom of the tank and its subsequent splash on the

4. Perform the pressure iteration and update vertical walls of the tank. Due to this second splash
the fluid velocities u, v, w. rotational stresses begin to develop around the vertical

5. Move the marker particles based on the new walls which result in the development of two vortices
fluid velocities. shown in Figure 5(c). Finally, the flow slows-down as

6. Go to step 1. more water pours into the tank and the vortices are
not so prominent as shown in Figure 5(d).

If instead of marker particles we use the free surface Figure 6 shows several frames from a 3D anima-
equation (11), step 5 is replaced by the computation Of tion of a forced wave traveling along a river bed
the height of the free surface and in step 1 we identify with submerged and semi-submerged obstacles. The
the surface cells based on the computed height field, walls of the obstacles are free-slip, the grid size is

40 x 12 x 40 and the caiculation time including the
10 Examples graphics took approximately one hour. The water sur-

We have created several two and three dimensional face height is calculated using the height field equation

dynamic fluid animations to demonstrate the power (11) which uses velocities computed from the solution

of our technique. The animations involve phenomena of the Navier-Stokes equations. The forced-wave trav-

like splashing, vorticity, waterfalls, waves, flow over els along the river bed due to the opening of a sluice

fully or partially submerged objects and buoyancy in gate whose other side contains water at a higher eleva-

a fluid flow with rigid objects interacting with static tion. All the sides of the river bed do not allow water

obstacles 1 . We use standard SGI GL library routines outflow, causing the elevation of the water surface

to render water. We alter the transparency of the water level and multiple reflections due to the water wave.

based on the viewing angle and the surface normal if we Figure 6(a) shows the initial state where the various
obstacles are clearly seen. Figure 6(b) shows the re-

'Note to reviewers: The examples we present here am also in- flection by 90 degrees of the forced-wave due to the
cluded in the accompanying videotape vertical wall of the river banks, while Figures 6(c-d)
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show two frames from the wave breaking on the semi- and pressure. The editor allows the simulation of corn-
submerged obstacle. Notice that the water level has plex fluid flows without prior knowledge of the under-
been increased due to the inflow of water. lying fluid dynamic equations.

Figure 7 shows several frames from a 3D animation Finally, we demonstrated the power of our technique
of a double non-forced deep ocean wavefront being re- through a series of examples which required up to two
flected and diffracted off a harbor wall. The walls of the hours of computation on an SGI Crimson workstation.
harbor are free-slip, the grid size is 50 x 20 x 40 and the
calculation time including the graphics took approxi- References
mately 2 hours. The water surface height is calculated
using the height field equation (11). Figure 7(a) shows [1] Baraff, D., (1989) "Analytical methods for dy-
a frame from the animation where the first wave has hit namic simulation of nonpenetrating rigid bodies,"
the harbor wall. Figure 7(b) shows the reflection of the Computer Graphics (SIGGRAPH Proceedings),
first wave off the harbor wall, while Figure 7(c) shows 23, pp. 223-232.
the superposition of the first reflected frame with the [2] Barzel, R., and Barr, A., (1988) "A modeling
second wave. Finally, Figure 7(d) shows the diffraction system based on dynamic constraints," Computer
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ders interacting with the piles. The grid size is 30 x [4] Fletcher, C.A.J., (1990) "Computational Tech-
15 x 30 and the calculation time including the graph- niques for Fluid Dynamics," Springer Verlag, Syd-
ics took approximately 33 minutes. The water surface ney, 1990.
height is calculated using the height field equation (11). [5 Simpl
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the inflow has just started making the cylinders move Model of Ocean Waves," SIGGRAPH Proceed-
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water around some of the piles is starting to rise as a pressible Flow," Phys. Fluids, 8, pp. 2182-2189.
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water has completely covered one of the piles. tion methods for a new Navier-Stokes algorithm,"

AIAA Journal, 27(1), pp. 37-43.
11 Conclusion [8] Kass, M., and Miller, G., (1990) "Rapid, stable
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(a. (b) (c)

Figure 4: Splashing drop. Initial state (a). Splashing and rebounding (b,c).

-- mmm
(a) (b) (c) (d)

Figure 5: Water jet splashing into a concrete tank (a-d).

(a) (b) (c) (d)

Figure 6: Forced-wave traveling along a r,'er bed with submerged and semi-submerged obstacles. Initial state and
obstacles (a). Wave reflection by 90 degrees due to an obstacle (b). Wave breaking on a semi-submerged obstacle
(c,d).

(a) (b) (c) (d)

Figure 7: Double wavefront reflected and diffracted off a harbour wall. First wave (a). Reflection of first wave off
harbour wall (b). Superposition of the first reflected wave and second wave (c). Wave Diffraction (d).

(a) (b)

Figure 8: Fast steady flow and buoyancy around obstacles. Initial state (a). State after collision of the cylinder to
the right with a pile (b).
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Abstract 1 Introduction

This paper develops a new approach to the anima- A very important goal of computer graphics has been
tion and motion control of four-legged animals. Even the realistic animation and control of living organisms
though our approach is general we use it to animate including their behaviors. The major challenges which
realistic walking and trotting of four-legged animals, arise in such animations are first the complexity of
as well as low level behaviors like target following. We modeling such organisms which include choosing the
first use model-based control algorithms to control the number of degrees of freedom, deciding which degrees
velocity, position and posture of the animal's body. of freedom are involved in a particular motion and
The output of the dynamic controller is a set of forces modeling different motions. Second, is the problem
and torques that are then distributed to the legs of the of controlling the degrees of freedom to achieve the de-
animal based on linear programming. As a result of sired motion in a way that is both realistic and need
those forces and torques the ground exerts forces that only high level interaction of a user with the given sys-
make the animal move. In order to ensure realistic tern. Third, is the problem of intelligent behavior and
walking and trotting animations at any given animal interaction of the animal with its environment which
speed, animal posture and ground elevation we then de- includes low level behaviors like like obstacle avoid-
velop a gait controller that controls the motion pattern ance and high level behaviors like intelligent decision
of the legs. The gait controller based on the fluctuating making. This paper presents a new approach to the
speed and orientation of the animal body computed by animation and control of multi-legged animals and low
the dynamic controller, kinematically determines the level behaviors that uses both model-based control the-
sequence in which legs are lifted off the ground, their ory and kinematic gait controllers.
speed when they are off the ground and their position Recently, several researchers have used a variety of
when they retouch the ground. This mixture of control techniques to address some of the problems within that
theory and kinematic gait control creates more realis- general area. Girard [2, 1] develops a kinematic con-
tic animations compared to previous approaches to the trol solution to the problem of animating both human
same problem which used purely kinematic solutions, figures and multilegged animals. His method is based
or only control theory or open-loop control and kine- on rules which are associated with dynamics. Raibert
matics. Furthermore, based on the forces computed by and Hodgins [3] develop a control theory approach to
the controller and the knowledge of the ground's fric- model behaviors like running, trotting, galloping, hop-
tional force we can automatically detect whether a de- ping and running of legged robots and animal bipeds.
sired given speed can be achieved based on the ground Their technique is based on hopping control, speed con-
conditions and the joint torque limits of the animal. trol and posture control. Witkin and kass [4] using op-
The low level behaviors that our algorithm models such timization techniques develop a spacetime constraint
as speed, posture, gait, gait transitions and target fol- algorithm and demonstrate its power by controlling a
lowing can be used by a higher level system that con- dynamic lamp. Panne, Fiume and Vranecic [5, 6] use
trols more complex animations. We demonstrate our optimal control theory in various applications like park-
technique through a series of dog animations. ing a car and for the dynamic walk of a biped across

a variable terrain. Wilhelms et al [7, 8] develop tech-
Category: Research paper, Format: Regular pa- niques for controlling dynamic systems based on po-
per. sition control implemented with springs and dampers

and other behaviors such as attraction and avoidance.
Keywords: Control of Multi-legged Animals, Control Bruderlin and Calvert [9] develop a dynamic model
theory and Kinematics, Control of low level behaviors, that is kinematically controlled based on techniques
Physics-Based Modeling. adapted from biomechanics. Once the walking motion

was calculated the rest of the body motion was base on
kinematics. Finally, McKenna and Zeltzer [10] develop
an open-loop dynamic system for a cockroach that is
controlled by a kinematic gait controller which in turn
triggers actuators to produce the necessary forces for
various walking patterns.

In this paper we use both model-based control the-
ory and kinematic gait controllers to achieve realistic
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animal animations and low level behaviors such as tar-
get following and reaching. It is worth mentioning
though that our approach is general and can be applied
with appropriate modifications to biped locomotion as
well. Our approach is closest in nature to that used by
McKenna and Zeltzer with the main difference being
the use of closed-loop model-based control. In this way
we can avoid the problems of manually tuning the ac-
tion of motor programs to exert the correct forces that
achieve the desired posture for example. Furthermore,
we can simulate apart from walking other behaviors
like animal trotting and furthermore target following
at variable speeds determined by the target's motion.

We first use model-based control algorithms to con-
trol the velocity, position and posture of the animal's
body. The output of the controller is a set of forces and
torques that are then distributed to the legs of the ani-
mal based on linear programming. As a result of those
forces and torques the ground exerts frictional and ver-
tical forces that result in forces and torques that make
the animal move.

In order to ensure realistic walking and trotting ani-
mations at variable animal speeds, animal posture and Figure 1: Dog model.
ground elevation we develop a kinematic gait controller
that controls the motion pattern of the legs. The gait
controller based on the fluctuating speed and orienta- joints. This makes it almost impossible to accurately
tion of the animal body computed by the dynamic con- control any artificial model, unless certain simplifying
troller, kinematically determines the sequence in which assumptions are made. In our case, we assume that
legs are lifted off the ground, their speed when they are the animal's body is rigid. Several articulated parts
off the ground and their position when they land on the are connected to the body with joints. These are the
ground. The use of control theory in combination with four legs, the neck with the head and the tail. The front
the kinematic gait controller creates very realistic an- legs consist of two joints: the hip joint that connects
imations. While with dynamic control theory we can them to the body and the ankle joint that connects the
control the speed of the animal and its posture, we upper and lower parts of the leg. The rear legs have an
can't control for example, the motion of the legs once extra joint that connects the lower leg part to the leg's
they are off the ground or the sequence in which the paw. The hip joints have two rotational and two trans-
legs are lifted from the ground. A kinematic controller lational dofs. The ankle and the paw joints have only
though can achieve that very easily. one rotational dof. The neck and the tail are jointed to

Furthermore, based on the forces computed by the the body with a one dof rotational joint. Finally the
dynamic controller and the knowledge of the ground's head is connected to the neck with a two dof rotational
frictional force we can automatically detect whether joint.
a desired given speed can be achieved based on the
ground conditions and the joint torque limits of the an- 3 Model-Based Control
imal. The low level behaviors such as speed, posture,
gait, gait transitions and target following that our al- To be able to control a given system (passive or active)
gorithm models can be used by a higher level system we need first to define it dynamically. In control theory
that controls more complex animations. terminology the dynamic model we use to model the

In the following sections we present the details of dynamics of a given system is called the plant. Once
our technique whose dynamic control part is similar to the plant has been defined we apply some control strat-
Park's approach for controlling dynamic vehicles [11] egy to be able to control its behavior of certain of its
and demonstrate it through examples involving dog an- variables.
imations. The way we model the problem of a walking or trot-

ting animal is through the design of two subsystems.
2 The Animal Model One subsystem is the rigid body of the animal, while

the other subsystem includes everything else, i.e., its
Although the control methods used in this paper are legs, the terrain etc. These two subsystems, the body
general and can be applied to a variety of legged an- subsystem and the leg subsystem, interact through
imals with two or more feet, we decided to concen- forces. The forces exerted by the legs result in ac-
trate on four legged creatures. The model that we use celeration vectors on the body. At the same time the
to demonstrate our theory is that of a dog shown in instantaneous position of the body determines which
Figure 1. The number of degrees of freedom (dof) of legs are able to touch the ground and exert a force.
most legged animals is very large primarily due to the The velocity of the body determines how fast the leg
flexibility of their body and the complexity of their joints have to flex to keep the feet on the ground. Thus
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the two subsystems influence one another in a closed- the two horizontal velocities 6, and 6Y of the c.o.g. In
loop feedback network. this way we can control both the speed and the loca-

In this paper we adopt the following simplifying as- tion of the animal. Without loss of generality, we can
sumption for the animal's body. The body can be corn- approximate the body subsystem as six noninteract-
pletely described by it mass m, its inertia tensor Le, ing subsystems. Each of those subsystems represents
its dimensions with respect to a coordinate frame 0 the dynamics of the rigid body of the animal. The
located at its center its center of gravity, and the fol- first three subsystems represent the way the vehicle
lowing quantities with respect to a world coordinate body rotates about its center of gravity. The other
system -t, three represent the way the center of gravity moves

through space. Each of those subsystems has the fol-
c lowing form. Given as input the acceleration of the

corresponding variable resulting from the forces and
S (1) torques the legs exert, each subsystem through one or

two consecutive integrations (depending on whether it
controls a velocity or position variable) computes the

where c and c are the position and velocity vectors value of the corresponding parameter. In control the-
of the body's center of gravity, 0 is the orientation of ory terminology each of those subsystems is called a
the body (i.e., the rotation of 0 w.r.t. f) expressed double-integral or single-integral plant (see Fig 2 for a
as Euler angles and w is the angular velocity of the double integral plant). And all six of them comprise
body. The above variables are the state variables of our the body's plant.
body subsystem. Their initial values can be specified
arbitrarily, but afterwards they will vary according to
the accelerations applied by the legs. We also express Plant: Body Dynamics
the position of a point on the anim al x w.r.t. to the ------------------------------------------------
world coordinate system 4t as

x = c +Rp, (2) f dt f dt : t

where R is the rotation matrix corresponding to 0 and ------------------------..................-
p is the position of the point w.r.t. to 0.

To control the vehicle position completely it is suffi- ................................................
cient to control the vectors c and 0. In practice though
is is often more desirable or convenient to control the
rate of change of these vectors, i.e., to control the
body's linear and angular velocity. The only way the
controller can control the animal's motion is by exert- 2

ing forces through the legs (which simulate the action
of muscles). All the leg forces acting together result in
a net force and a net torque at the center of gravity of
the body. These in turn result in the linear and angu- Controller
lar acceleration vectors Z and tý from which we update
the animal's position in space. Therefore, the dynamic
controller must control the body's state variables indi- Figure 2: Double Integral plant and controller used for
rectly through those accelerations. position variables.

The design of the above controllers depends on cer-
tain minimum criteria that need to be met to ensure The problem then of controlling the body motion re-
that the walking will look realistic. We came up with duces to the simpler problem of controlling the state
the following three minimum criteria, variables of the six non-interacting double integral

plants defined above. To control each of those plants1. The body of the animal should never hit the we set-up a control loop in each of them to regulate
ground. one of its state variables as shown in Figure 2 for the

2. The animal should be able to stay on course even plant which corresponds to a system variable si. Dsi
when moving on rough terrain, is the desired value of the parameter si. The block

labeled si-controller will produce an acceleration ii in
3. The animal's leg motion should be regular on good order to make si equal to Dsi. The accelerations (lin-

terrain, but not necessarily on bad terrain. ear or angular) exerted by the controllers are a result

4. We want to be able to control the animal's speed of forces and torques that all the legs should simultane-
to be able to model low level behaviors like target ously exert as a result of muscle action. The question
tracking. that arises is whether such forces and torques can be

exerted by the legs. Depending on the animal's torque
Based on the above criteria we choose to control joint limits and the friction that the ground can exert

the three orientation angles 6i of the center of gray- it may not be possible. In such a case we will assume
ity (c.o.g.), the vertical position of the c.o.g. c, and that the animal's legs will exert the maximum force
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or torque they can. This in turn means that the de- to the center of mass of the animal body, so that the
sired value of the controlled variable will take longer body obtains the desired velocity, position and orien-
or may not be possible to be reached. We will always tation. This force and torque should be the result of
assume for the purposes of this paper that the animal forces exerted by the ground through the legs. We
exerts the maximum force it can to avoid slipping or therefore need an algorithm that determines how the
damaging its joints. total force and torque should be distributed to the legs.

The fraction of the total force that each leg will ex-
ert to the ground is determined using linear program-
ming. Clearly, only the feet that are in contact with the

Plant: Body Dynamics ground each time are capable of moving the body. The
orientation of the body is controlled by the torques ap-

-• plied at the center of mass. These torques result from
dt SO 'the force applied by each leg and depend on the rela-

tive position of the tip of that leg with respect to the
center of the body. Limits exist on the maximum force
that each leg can exert. This means that, depending
on the number of legs in contact with the ground and
their relative position, it might or might not be possi-
ble to apply the required forces and torques (computed
by the dynamic controllers). The purpose of the lin-
ear programming procedure is to find the optimal force
assignment to legs which minimizes the difference be-

Da,(t) tween the required and the actual values.
................................................... Linear programming was chosen for the force distri-

bution for its versatility and efficiency. The Simplex
Controller method that is most often used to solve linear pro-

gramming problems can be expected to run in linear
time for most of the cases [12]. Linear programming

Figure 3: Single integral plant and controller used for attempts to assign values to variables so that a specific
position variables cost function, depending on these variables, is mini-

mized subject to certain constraints. In our case the
We chose the control laws by which the controllers variables are the actual forces exerted by each leg. The

were designed so that the closed-loop response of each constraints are the limits in the maximum force that
control loop would be of the general form expressed each leg can exert, and the cost function consists a
in the complex frequency domain (after taking the weighted sum of the differences between required and
Laplace transform) actual forces and torques. Ideally we would like the

actual forces and torques to be equal to the required
si(s) 1.0 ones. In this case all the errors are zero, and the cost

Dsi (s) - 82 + + 1.0' (3) function is minimized. Adjusting the weights in the
cost function is equivalent to changing the relative im-

In this expression, u is the -damping ratio of an ideal portance of matching any one of the variables with its
control loop, w is its undamped natural frequency and e required value. For example, if the cost for the errorcontol oop w i it unampe naura freueny ad s in the force an the x-axis is larger than then cost for
is the complex frequency. The Laplace transform of the the error in the torque around the y-axis, then the ac-
controlled variable is s,(s), while the Laplace transform tual force in the x-direction will try to match as closely
of the time-varying desired value of that variable is
Dai(s). The u and w parameters specify the damping as possible its required value, even if this results to a
and speed of response of the controller to a desired bigger error in the y-axis torque. An extra term in
value ands d oresetonsthe oher. othe cost function is also added to enforce even distri-value and are set by the user. . bution of the vertical force (mostly due to the body's

In our system, controllers wtich regulated a posi- weight) to all legs. This proves to add in the stability
tion variable controlled the output of a double-integral of the animal, especially in the case when one of the
plant. The other controllers which regulated the legs unexpectedly loses contact with the ground.
horizontal velocity variables controlled single-integral
plants. We therefore designed two controllers which Linear programming turns out to perform very well
ad the same closed-loop response (3). The controllers in cases where the errors are small. However, when

for the double-integral plants contained two gain blocks the required and actual forces and torques cannot beand a summation block as shown in Figure 2. The con- matched sufficiently closely, then even small changes in
ad lg sthe weights of the cost function can give highly unbal-trollers for the single-integral plants contained aanced errors.network followed by gain, as shown in Figure 3.

4 Linear Programming 5 Gait Controller

As mentioned above the dynamic controllers compute Gaits of different animals have been studied extensively
the total force and torque that needs to be applied and lots of interesting observations can be found in zo-
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ology literature [13, 14, 15, 16, 17]. Since our purpose
is to blend kinematic motion together with dynamics, end of
very valuable sources have been proven to be [17] and duty cycle reached center
[16], in which snapshots of animals walking and trot- of motion
ting are presented. Some technical terms needed for
the description of gaits can be found in [15] and we
repeat them here. A stride is a complete cycle of leg
movements, for example the sequence from the setting
down of a particular foot to the next setting down of
the same foot. A stride length is the distance traveled
in a stride and Stride frequency is the number of strides start of duty
taken per unit time. The duty factor of a foot is the cycle
duration of the stride for which it is on the ground.

The main purpose of the gait controller is to reposi-
tion the le s depending on the linear velocity and turn- 1 Mov o
ing rate of the animal's body. We have implemented 2. Move towards setdown point
two different gaits, the walk and the trot. The dog au- 3. Temporarily move towards center of motion
tomatically switches between them, depending on its 4. Push
speed. The walking gait is used by dogs when they
move slowly. When walking on flat surfaces with con-
stant velocity, three legs are always in contact with the
ground and one is lifted. The order in which legs a Figure 4: Automaton for leg motion transitions.

lted during a stride is: LF, RH, RF, LH (where L,
R, F, H are for Left, Right, Front, Hind, respectively).
This order ensures that the center of mass is always that point it starts moving towards it's set down point.
within the triangle formed by the tips of the legs on The set down point is determined by the gait controller,
the ground, guaranteeing static stability for the ani- and depends on the linear and angular velocity of the
mal. During the walk, the duty factor for each foot is body, as explained above. Finally, when it's time for
0.75. At faster speeds, dogs use the trot. During the the duty interval to begin, the gait controller once more
trot, LF and RH move together, so do RF and LH. The triggers a transition, this time from state 2 to state 4.
duty factor for each foot is 0.5 and at any time two feet The leg goes into state 3, if it gets jammed. Legs get
are on the ground and two feet are lifted. During the jammed as a result of unexpected events that cause the
trot the dog has to achieve dynamic stability, hip joint to rotate outside the operational area of the

The gait controller is responsible for the kinematics leg. Sliperry ground or very rough terrain could cause
of the leg motion. When a leg is touching down, its a leg to jam. Since the leg has to get back into its
motion is guided by the ground reaction forces. This operational area, it gets lifted temporarily and moves
enhances the realism of the animation. However, when for a short period of time towards the center of motion,
the leg is lifted from the ground, there is no reason to until it reaches a safe position where it can go back to
keep on treating it dynamically since its motion has state 4. It is desirable for a leg to stay for short periods
negligible effects on the motion of the rest of the body. of time in state 3, since its being unexpectedly lifted
The fact that a particular animal if trained appropri- creates potential hazards to the stability of the body.
ately, can walk in a variety of styles supports even more
the claim that dynamics alone are not sufficient to cre- I

ate realistically looking motion. 0". . C C" _
The inputs to the gait controller are the desired

speed of the animal as well as its angular velocity. The
higher the speed, the longer the stride length and the
stride frequency. This means that the swing angle of
a leg while lifted from the ground increases with an
increase in the animal's speed. When the animal is b

turning, the gait controller positions the legs not only
forward but also sideways so that they can apply the
appropriate torque for the turn to take place.

The leg motion is guided by the automaton shown Figure 5: Flow diagram of our system
in Figure 4. Each leg can be in one of four distinct
states. Actions that cause a change in the leg's state While a leg is in states 1, 2 or 3, the gait controller
are triggered either externally by the gait controller or is responsible for kinematically setting the angles of
internally as a result of the leg's orientation. State 4 its ankle and paw joints so that their motion looks as
is the only state where a leg is touching the ground natural as possible. It turns out that the correct mo-
and pushing. When the duty interval of the leg is over, tion of these joints adds a lot to the visual effect of the
the gait controller triggers a transition from state 4 to animation.
state 1 for that leg. In state 1 the leg moves towards the In conclusion our approach consists of the dynamic
center of its swing (center of motion). When it reaches controller, the linear programming and the gait con-
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troller subsystems that interact as shown in Figure 5. [5] van de Panne M., Fiume, E., Vranesic, Z., (1990)
"Reusable Motion Synthesis Using State-Space

6 Experiments Controllers", SIGGRAPH Proc., pp. 225-234.

We have created two dynamic animations to demon- [6] van de Panne M., Fiume, E., Vranesic, Z., (1993)"Acontroller for the dynamic walk of a biped
strate the power of our technique. The animations in- acontrolle te damcw of a bIEd_ . across variable terrain", Proc. of the 31st IEEE
volve walking, trotting, transitions between these kinds conference on decision and control.
of locomotion, turning, and acceleration and decelera-
tion as part of simple behaviors like variable speed tar- [7] Wilteoms, J., (1986) "Virya-A motion control ed-•ne prsut.Th exmpeswe reen hee reincluded itor for the kinematic and dynamic animation,"
;et pursuit. The examples we present here are inlddGraphics Interface, pp. 141-146.in the accompanying videotape.

The first animation shows several frames from a 3D [8] Wilhelms, J. and Skinner, R., (1989) "An inter-
animation of a dog going after a moving ball. In the active approach to behavioral control", Proc. of
first part of the animation the ball is initially static. Graphics Interface.
The dog starts walking towards the ball and gradu- [9] Bruderlin, A., and Calvert T.W., (1989) "Goal-
ally changes its locomotion to trotting. Once the dog directed dynamic animation of human walking",
reaches the ball it stops, but the ball moves again in SIGGRAPH Proc., pp. 233-242.
the second part of the animation. The dog slows its [10] McKenna M., and Zeltzer, D., (1990) "Dynamic
trotting speed and then increases its speed while si- Simulation of autonomous legged locomotion",
multaneously turning, to reach the ball Throughout the SIGGRAPH Proc., pp. 29-38.
simulation the dynamic controller controls the speed, [11] Park W. T., (1972) "Control of multilegged vehi-
turninj angle and height of the dogs body from the cles", PhD thesis Univ. of Pennsylvania.
groun .

The second animation involves walking and trotting [12] Press, W., Flannery, B., Teukolsky, S., and Vet-
on uneven terrain. The dog starts from a still posi- terling, W., (1986) "Numerical Recipes: The art
tion and walks while turning towards the first bump. of scientific computing", Cambridge Univ. Press,
It then gradually starts to trot and then ascends and Cambridge.
descends from the first bump. The dog then contin- [13] Goldspink, D., Alexander, R Mc N, editors, "Me-
ues to move towards the dog-house and ascends on the chanics and energetics of animal locomotion."
second bump and then stops. Throughout the simula- [14] Sukhanov V.B., (1968) "General System of sym-
tion the dynamic controller controls the speed, turning metrical locomotion of terrestrial vertebrates and
angle and height of the dog's body from the ground. some features of movement of lower tetrapods,

Nauka Publishers.
7 Conclusions [15] Alexander, R.McN., (1984) "The gaits of bipedal

and quadrupedal animals," The InternationalIn this paper we have developed a new approach to journal of Robotics research, 3(2).
the animation and control of four-legged animals by [6Brn oC (198i) rDogaLco t an2gi
combining dynamic control theory algorithms and kine- [16] Brown M.C., (1986) "Dog Locomotion and gait
matic gait controllers. The dynamic controller regu- analysis".
lates the position and velocity of the animal's body [17] Muybridge E., (1957) "Animals in Motion," Dover
center of mass and computes the necessary forces and Publications, NY 1957.
torques that are distributed to the animal's legs us-
ing linear programming. Furthermore, we developed a
kinematic gait controller to control the motion pattern
of the legs once they are off the ground. In this way we
were able to animate realistic walking, trotting, transi-

C tions between these kinds of locomotion, turning, and
acceleration and deceleration as part of simple behav-
iors like variable speed target pursuit.
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Pipeline Rendering:Interactive Refractions, Reflections, and Shadows
Research Paper: Regular Format

Abstract and not remotely interactive. Even the fastest ray-
A coordinated use of hardware-provided bitplanes and tracing systems require static geometry to achieve their
rendering pipelines can create ray-trace quality illumi- results [16].
nation effects in real-time. We provide recursive re- In contrast, advanced hardware architectures such as
flections through the use of secondary viewpoints, and the SGI Reality EngineTM  have brought an added level
present a method for using a homogeneous 2-D projec- of realism to interactive environments through the usetive image mapping to extend this method for refractive of sophisticated graphics pipelines and added levels of
surfaces. We extend the traditional use of shadow vol- screen buffer information. These features have enabled
umes to provide reflected and refracted shadows as well software developers to bring previously unavailable de-
as reflected and refracted lighting. A shadow blending tails such as shadows and mirrors to many interactive
techn!que is demonstrated and the shadow and light- applications. Even the most basic graphics systems to-
ing effects are incorporated into our recursive viewpoint day now support some level of image masking and ma-
paradigm. Finally we incorporate materjal properties nipulation common to the image processing community
including a translucency model to provide a general for years. These hardware provisions are have yet to be
framework for creating physically approximate render- fully exploited though clever programming techniques
ingo. These techniques are immediately applicable to by several implementors have produced real-time shad-
areas such as 3D modeling, animation, and interactive
environments to produce more realistic images in real- ows and mirrors.[ll][14]
time. Thisiaper expands these techniques to include not

only re ection but a technique for refractive surfaces
Keywords: Real-time, Rendering Pipeline, Reflec- as well. The model presented extends the current re-
tion, Refraction, Translucency, Shadows, Animation flection techniques to provide an arbitrary level of re-

fraction and reflection for use in "hall-of-mirror" type
environments and to provide a close approximation for1 Introduction refractive objects. A corrective image transform is pre-
sented to correct for perspective distortions during the

Much attention has been devoted tojyhoto-realistic ren- image mapping of the secondary refracted image. In
dering techniques as ray-tracing and radiosity packages addition, a method for combining the previously ex-
have become increasingly sophisticated. These me - clusionary shadow and mirror stenciling methods isods provide a basic foundation of visual cues and effects demonstrated which not only preserves shadows in all
to produce extremely high quality and highly accu- secondary images, but which also accounts for refrac-
rate images at a considerate cost, namely, computation tion and reflection of the light and shadows in the pri-
time. Nether of these techniques have any widespread mary and secondary images as well Finally the use
application in true interactive environments, such as of hardware provided features such as fog anA texture
animation creation and virtual worlds. blending is shown to provide simulation of varying ma-

Many so-called interactive environments such as Vir- terial, properties such as translucency and shininess.
tual Building systems [1][17] rely on precomputation of Combined, these techniques provide a real-time alter-

native to ray-tracing for creating fast, approximate re-static environments to form progressive radiosity solu- flective and refractive lighting effects. Furthermore,tions. Other systems dealing with lighting effects [7] the techniques described provide a foundation for more
rely on a series of images from a single viewpoint. All advanced rendering features such as anisotropic reflec-
"of the systems suffer from large computational over- tions and caustics.
head and unchangeable geometry. Even in incremental
radiosity solutions [6], geometry changes require signif- 2 Definitions
icant recomiputation time. In addition, radiosity-based
solutions inhibit the use of reflective and refractive sur-
faces. For the purposes of thispaper, we shall introduce terms

Systems based on forward ray-tracing [8] are either common to users in the Gd environment. Stencil planes
non-interactive or else suffer from the problems inher- are essentially an enhanced Z-buffer mentioned in [3].
ent in the technique [20]. Only a few attempt to accu- In its simplest form, pixels are written only if the cur-rately handle indirect illumination [12]. Backward ray- rent stencil value (analogous to the current Z value)

[oreaccrately handle indirectilla ckwauy- of the destination pixel passes the defined stencil test.tracing systems (2][10][5] more accurately handle caus Depending on the result, the pixel is written and the
tics; but again these methods are very time-intensive stencil value is changed.

Shadow volumes are volumes bounded by silhouette
°Note to reviewer: The color figures included in this paper faces. A silhouette face is a face created for each edge

are also included as color slides. The slides are of much better of an object by extending that edge away from the light
quality, source along the light-ray direction.

I



Ani accumulation buffer is a secondary image buffer
to which the current image can be added. Tile resulting
image can also be di% ided by a constant . This enab les
a blending of images or image features.

In-out refractions are refractijons which occur when C
light passes from one medium to another and back to C
the first. such as light traversing through a piece of c
glass. There is an entry refraction and an exit refrac- 1 ,"1
tion. producing a refracted ray parallel to the incident 10
ray.

3 Reflections

Reflections are a useful tool in interact ive modecling and
an important element for creating realistic animations.
A reflective images corresponds to an inverted image
from a secondary viewpotnt. In oilier words. the re- ORIGINAL IMAGE REFRACTED IMAGE
flected image is the flipped imagec from a viewpoint onli o1
thle -other- side of thle mirror. hlis analogy provides IM

the basis for mirror reflection In systems such as [141.
Mirrors are implemented by renderitig thle entire en-

vironment. exclusive of the miirrored surface. The mir-
rored surface is drawn with Z-bufl'ering. creating a sten-
cil mask on pixels where the mirror is visible. A sec-
ond rendering of thle environment is then performed

frmtereflected viewpoint, drawing orly over theDITREIMG
frevomuthe masked pixels. Because the reflected angleDITRE IMG

(angle from mirror plane to reflected viewpoint) is thle
negative of the incident angle and because the image

is flipped, the reflected image directly **fits"* of t o file = h c

4 Refractions COMPOSITE IMAGE AK

Just as reflections provide strong visual cues, refractive
elementts also add additional realism for animiations and Figure 1: Refracted Image vs. Camera Image
ititeractive enviornments. Refractive imiages are similar
in concept to reflections. hut more complex in practice.

While, a mirrored imiage directly corresponds to thle
reflective surface to w hicl it maps. a refracted image where
maps to a distorted image space. Simply performing a M 3 = M4n 'I.(2)
second retidering in the stencilled area'does not over- and
lay tlie correct Image portioni. *rhis is demotist ratedM4=P Cro P(3
in' Figure 1. The area visible through thle transpar-=PCr o .(3
enit :urface in tfie refracted view is different thani(the In 3. P is (lie perspective transform and C and Cr
imiage area from thle original v~iewpoinit: areas outside are the original and refracted camera transforms. re-
the refracting surface and even ill ront miay be visible spectively.
in the, refracted iitiage. This d iflerence is(ue to two This r'esults in a 2-D projective transform of arbi-
factors:- thle eliflerence betw~een incident .nd refracted trary quadrilateral to quadrilateral described in [9) and
vie1vpoinits and the perspective' distortion. included iii Appendix A. This transform, described by

Be-cause the incident angle does. no0t equal tie re- a 30x~ homogeneous transform. canl be applied directly
fracted angle. thfe refracted image is rotated with re- to thle screen-viewport. ma pping to distort the refrac-
spert to tile original image. Thtis is further roil- five image into the normal imiage space. In hardware
pomznd.'el by ilte rotated imiage plane undergoing a per- which :'upports user-defined tran-sforms. this transform
spe'ctive disiortioti different than thle- perspect ive' dis- can he itnserted directly at thle end of the rendering
tort ion of flie original platt '. T[he perspective t ranls- pipelino. InI systems w'here this is not possible. such
format ions are tlie- samne. hut because utie planes have' -steSlco rpisJ

elil'eetit oiettation. he esutin ditorion ar df- s te Slicn CaphcsTIIarchitecture. this transform
diferent. oritenrutatios. thate refractin diyerton Mre jdaifr can he Impilemented as a 4x4 homogeneous transform
facent, Tor resunlt. ias toatw diffrenrativ squadrilatnar inserted in the world-to-unit pipeline. The resultingface fo oxmpl. napsto wo iffren qudriateals transform is cotnstructed with a zero scale factor for
in thi,- orn-innina versus thle re'fractedl iiiiwig4". so t hat lie tmapping is to the Z = 0) plane. Without

The- n*frne'-t ve' itmiage Ir do' 're-oilt i'oi- this mlapp1) ing, thle tapering and bliewiiig effects from
inal imjage If) thirouigh ;1 2-I) leiject lye Project ive.' Illali` ilie ((uaidrlateral distortiont affect the Z coordinates.

-\1 N 3. IThis itiajpitig 1, f ile- intitersf'eit l~lof I--.'1i This scaling does however preclude tlie use of tilie Z-
iinma'e mlmappiiiu 11-t M 4 w'ith tilie- ro'le'e-t lv. planar Nur- hulfer for hidden surface removal as all image points
faree 'IV now have the same Z value. This met hod also does

not allow for tile Iratislucetic simulatiotn described be-
Iii = IrM3 (I) lowv. dhIwe to t lie loss of depjt hi.
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Note also that this method does not produce true LIGHT
refractions. merely a close approximation to tlie refrac- SOURCE
tive image. In a true refractive image. every ray inci-
dent wit 'i the refractive plane Iends accoraing'to its REFRACTING
angle with the plane: this method, however, uses only SURFACE PO R
one incident angle. In practice. two angles are used to REFRACTED
provide more realistic results with the system. First.
the incident ray is taken from the camera location to IV
the refracting race center to determine whether the in- SHADOW
cident angle is greater than tile critical angle. If this is
the case. the surface is taken to be whol reflective. IfECs
the angle is less than the critical angle. the incident an-
gle for Suell's Law is taken at the point of intersection
of the view vector (camera's negative Z axis) and the
plane in which the refracting face lies. This method
insures that the critical angle is reached as the plane 1: PRIMARY LIGHT 5: CUBE'S REFRACTED
moves tangentially to the view. vet the refracted image 2. PRIMARY A SHADOW & SPHERE'S
is seen is a smooth scrolling of the background behind REFRACTED LIGHT SHADOW FROMthe face. rATDLGTsao Fo

(NOT PRESENT WHEN REFRACTED LIGHT
I EXIT REFRACTIONS) 6: SPHERE'S SHADOW

5 Refractive Shadows 3: CUBE'S REFRACTED FROM REFRACTED
SHADOW & LIGHT

While the above method does produce accurate re- PRIMARY LIGHT 7: REFRACTED LIGHT
flective images and close approximations for refractive 43 CUBE'S REFRACTED 8: REFRACTING SURFACE'S
surfaces. it does not produce accurate lighting affects
from these surfaces. Light reflects off a mirror and re-
fracts through glass producing different shadows than if
not present. To produce a more accurate image. these
effects must also be taken into account. Therefore. any Figure 2: Light interaction with refractive surface
shadow generation method must tiot only work in coin-
junction with1 theie stenciling met hod described above.Cut it must also be affected hy tile reflective and re-frctite surfaleso i affscted hefor shadows falling inside this volume. This itself in-fractive surfaces in a scene. ue w ae:nml bet nietevlmgn

Our shadows are implemented using the traditional cludes two cases: namely objects inside the volume gen-
shadow volume technique described by [11]. This tech- crating shadows and objects outside the volume whose

S- cfshadows get refracted into the volume. In the first
nique uses the in-out principle of silhouette faces to case. the shadow volume cannot intersect the refract-
mask regions inside the shadow volume. ing plane for to do so would place the object outside

To understand how this method must be extended the light volume. In the second case. the shadow vol-
for refractive surfaces. examine Figure 2. This figure time must intersect the refracting plane in order to be
displays thle complex shadow patterns caused by oh- refracted into the light volume. because true in-out
jects on both sides of a refracting surface. Nott" that refraction results in refracted rays parallel to incident
this is not an exact representation but instead a hy- rays. objects outside the light vol'ume cannot cast shad-
brid modlel used in our svstetn to greater deiuonstratte o•'s into the light volume directly from the primary
the refracting effects. Ilmherays are refracted a.s in a light source. oth intersection cises can be checkea
change of medium: the% do not represent true in-out during tile shadow volume generation. A simple pre-
r, fraction of a material'with a thickn.ss. With m-out shadow generation check using dot-products can de-
refraction. the refracted rays are parallel to the incident termine if the object is on the appropriate side of the
rays atid merely olfset, thiereby not pernittinlg direct refracting plane and can save having to generate the
light to fall within tilie light volume. (131 Although tlie shadow volume.
included images were generated with this change-of- The second pass creates shadows for the entire en-
medium iiodel. in-out refractions are achieved merely vironment. Even the refracted light volume region is
by changing thie refract ing function (or by placing back- included. This captures the shadow effect caused by
to-back refract ing faces wit I, opposing indices of refrac- the refractive surface itself.
lion in the curretnt model).

To accuratelv model shadows. each ofthe abovei men- 6 Recursion
tioned fe'atures" must he included in our shadow model.
TO accomplish Ihis. we require a two-pass shadow gen-
"°rationi approach. 'Ime first pha.es, generates all .-had- Both methods for rendering shadows and for render-
ows aid fighting falling withiin thle refracted light area. ing refraction and reflection require use of the stencil

lih' ,,,,tind pass renders all lightiing and shadows out- planes. While it might seem that the refraction stencil
side' this' are'a. This metho, " ,-r,.at,•s hoth I , sladw* iiiask value would be a logical choice for the zero value

and ,'au.iit'c e'l',ects of tihe re'fract ive surface., in tie. shadow (algorithm). this is not tihe case. In or-

Im I lih. first pa.s. a light volhiti,' [151 i,, genierate.,d for der to have' recursive refractions. we instead choose a

the refracting face. Shadow volumiesare' the'n -tiiirat,.d value which is t hree'-fourths of the maximum stencil
vahie for our "'zero" shadow value, and one-half of the

• t A hh,,ulia ,,nl refracti..ns are. mie'eu ms t hen.,te',,f.rwart. tih" imaxiiumnll for our inininmu shadow stencil value. This
ute I,.lh,.' ,,,.,'.ri i:e'eare' wplli,.ablo. fr rll0c..tic.n wit li h nlv tikn'-r provides half of t lie stencil buffer for shadow calcula-
varia,,,11, l ion and half for rectirsiv- le'vels. These values can be



= STENCIL 0

STENCIL I all shadows are drawn, all stencil values greater than
shadow nminimum are reset to zero, for continuation of
the refraction recursion. The entire procedure is seen

= STENCIL 2 below:

CRIp draevizdow(Canera)
CO 0(CRU)RFI 

if (sHIDOVS){
turn-lights-off(;

IO drau-nornal.-objects(Cauera,ZERO); l/ambient only
for (each light){

apply-stencil(EQUAL. ZERO, REPLACE, SHAD-ZERO);
draw-ref.shadows(); //draw shadows in ref areas
apply-stencil(O.ELATEi, SUADNIMI, REPLACE, SIADZERO);
draw all.shadows) 0; //draw remaining shadows
apply7stoncil(GREATER, SHAD-MIN. REPLACE, ZERO);}

drau-norml-objects(Camera,ZELRO)
IRIF if (REF)(

REFLEVEL++.
dxoawref-objects(Caoera);
REFLEVEL--;

apply-stenci(CORP-FUIC, CORP-VALUE, PASS.FUNC, PASSVLLKE)

"(IR'P)RnI (IRfl)RTY stoncil(COMPJUNC, CO•.YvALUE. PASS5URC, PASS..VLUE);
apply.-to..screen 0; //apply stencil to every pixel

/OSSADOV ROUTINESe*/

draw.ref, shadowm()

for (each ref.face){
face-light.stencil(roe..face); //light volume

Figure 3: Recursive Stenciling tnrn..light-on(light);
mLke-all-shadows(RUST-IZITESECT, ref-face);
drau..norma-objects (Camra,SRAD-ZERO);
apply.stenci:(GREATER. SIAD-MIN, REPLACE, SHAD.ZERO);

adjusted according to the recursion level wne'ded or the' ro.flight(lightre.fface); //xove to ref position

shadow object complexity. ake-.all.shadows(CIO'T-.IITERSECT, roefface);

We choose zero for our render area value: this is the drae-normal-objocts(CameraSRID-ZERO);

stencil inask value for drawing at every level of recur- apply-stencil(GREATER, SHIADMI, REPLACE. SHAD.ZERO)

sion. At ,.ach level of recursion, all values ,loss than
lhe stencil minnimum are incremented by one (setting

tIhe current rendering area to one), and thie netw refrac- draw-all.shadous()

tive surface is drawn setting the stencil value to zero. {
Tl'F refracted image is then Irawn in the zero stencil 5ke.llshadoW5(LVAYS, re.face);
area. and the process is repeated for all other refrac- draw.normal-objects(Camera,SUAD.-ZERO);"I' aply$ tnc l (GEATR. HADMIN REPLACE, SRIIDoZERO)
tive surfaces. Once tiIe( desired recursion level has betnR
reached, all stencil values less than tie shadow muini-
ntim are decremented (with zero capped). which -ssen- uLkseall shadows(MODE.ref-face)
tiailv pops uis back one level of recursion. The process ,
is t;lie repeated for thlie next recursive surface. with for (each face)
stencil values ilicri'entod hyv oIne- and the surface cre- draw.shadou.volume(face,RODE.ref.face);
atingt a stencil miia.sk of zero. 'This proce.ss is illustrated I
inl Figure ;.

At -.achIe level of recursion, shadows mIuzot he drawn drawshadouvolumo()
in t he' valid area. l' r,,ason for our choice of .hadow make-shadow-voluae(ref-face ,sv, intersect•face);
zero is noW apj)arent: it avoids conflict with lit re- switch (NODE){
,-ulrsive. refraction Iev.•k. All stencil values of zero at case CAN'T.IITERSECT:
each lvel arer chliKg-d to thlie shadow zero. and .-had- if C.(interssct-face-ref-face)){
oWs are th len renldered as described above uisilngi t hle' draw.shadou-stencil(sv);
ill-l Illilethod. The shadow zero shouhld he ,hose'n MO muakeshadoe-voluee(iintersect-face,NODE,ref-face);
that li, mn-,ut 1.111 hod ,Io,., ot go Ibelow ilhe shadlow I
mlliniili jr ahe\', lie Ilaxitilulnl stencil value, III order case RUST-IITERSECT:
to preventl coilflict with tile refraction steliink. After if (intersectface-ref-face){



ke-sah&adow.volme(intereect-fac,AL.AYSO); however, extensive stencil value "juggling" of the image
} is necessary.

case ALVAYS:
drae.shadoe-.toncil(av); 8 Object Attributes and Translucency
if (intersect-face) {

make-ehadoo-volume(iatersect-face,ALUAYS,O); Refraction and reflection need not be limited to purely
transparent or purely specular surfaces, respectively.
We can create a multitude of materials by rendering

/*REt ROUTINES (Refraction and Reflection)e/ the refractive surface again after the refractive Image
is drawn. This second rendering is alpha-blended with

draw..rofobjocte(Camera) the refracted scene. On the Iris IndigoTM system, this
f actually requires two additional renderings of the re-

it (R-.LVEI.-,-1) fractive face since lit faces cannot have a source al-
clear.stencil(ZEU); pha value. The first rendering is done without color

apply.steacil(EQUA., ZERO, REPLACE, REF.LEVEL); and sets the destination alpha value to the appropri-
for (each ref.face){ ate value. The second rendering is with lighting and a

ereacil(EQUAL, REFLEVEL, REPLACE, ZERO); blending function depending on the destination pixel
j d~ra, face(ref.face); //REFLEVEL->O where face chosen. This permits hardware shading effects and

RefCa-era-ref.camra(ref.faceCauera); other hardware rendering features such as textures to
r draw._.idow(,EF,.CAJER); be blended with the refracted scene.

apply-stenci(EQUAL, ZERO, REPLACE, REFJEVEL); In addition, translucency can be simulated using the
RC Zhardware fog feature. Translucent objects act as a fil-

apply.stencil(EQUAL, REF_LEVE., RPLACE, ZERO); ter with closer objects more clearly visible than far-
ther objects due to the random refractions which take

draw.noroma-Object s(Camera,STU_.VALUE) place. This effect can be approximated using hardware
I fog features with the minimum fog set at the refractive

eetupuview(Camera); i/view from casera plane distance and the maximum at the desired dis-
•tenc.ICEQUAL, ST.ENLIJE, IMP, STEVALUE); tance depending on the material property. Although
for (each ono..ref object) fog is linear with respect to the view, the approxima-

draw.object(; tion is fairly accurate due to the limited angular dis-
} placement of the refracting plane due to the critical

I angle. The effect of translucency versus simple alpha
blending is demonstrated in Figure 4.

7 Soft Shadows and Caustics 9 Limitations and Extensions
While the system described can produce fast, complex

While the above algorithm does handle the constituent images, it does suffer from several shortcomings. Be-
effects of primary and indirect illumination, diffuse cause it relies on multiple viewpoints refractive and
light is incrementally added resulting in producing only reflective surfaces must be planar. Shaaows suffer from
the umbra of the shadows. In order to produce the aliasing effects due to the use of image space precision
penumbra, an accumulation of the lighting effects from in the calculation. In addition, hardware shading (typ-
the primary as well as refracted lights must occur. For- ically the Phong model [4]) is used for the illumination
tunately, we can use an accumulation buffer to do just model, which is widely know for its inadequacies [19].
this. In the same regard, the system is hardware dependent

There are two methods for performing this accumu- on the number of stencil and accumulation bits, as well
lation of lighting effects. The first method is to treat as the viewport-screen transforms supported.
each shadow calculation as independent and sum each The rendering phase is also very time-dependent on
resulting image. Areas which receive light from both the complexity o the environment as well as the recur-
the source and refracted light volume produce cans-

(C tic effects. This method has limitations when using a sion level for refractions (reflections). Shadows require
I single accumulation buffer due to the non-independent O(num.edges * recursive-depth) (4)

effects of different lights.
The second method uses an extension of s adow vol- for each scene rendering, of which there are

umes by [3] for soft shadows. By processing all shadow
volumes without producing intermediate images, the num-ref-faces*(num-ref-faces-1)( " - i

stencil value of each pixel represents a "darkness level" (5)
due to encasement in several shadow volumes. The ac-

tual lighting of the scene is performed after all shadow For complex refractive surfaces, this expense can
volumes have been generated. Assuming the darkness quickly become prohibitive even when compared to ray-
level is only greater than the zero stencil value, the tracing.
scene is redrawn with. diffuse lighting for areas whose For scenes with a limited number of planar refractive

stencil value is less than the shadow zero value. All and reflective surfaces or with a low recursive depth,
stencil values are then decremented, and the image is this system is very effective even with minimal hard-
redrawn. This process is repeated for each darkness ware support. The system currently runs effectively on

level, accumulating each intermediate image. This pro- an Iris Indigo XS 2 4 TM with 8 stencil bits and a 48 bit
duces a final image with intensities based on the num- accumulation buffer.
ber of enclosed shadow volumes. This method does not Additional hardware support would provide greater
suffer from the problems inherent in the first method; facilities for creating more complex images. Multiple
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accumulation buffers would provide greater shadow- B 3-D Quadrilateral Projective Map
blending capabilities. Additional pipeline control
such as viewport transforms or additional fog features Given the 2-D quadrilateral projective transform
would enable distorted refractions in conjunction with
translucenc. ad g1

The method can also be extended using the accu- Mqq3-[ b e h (9)
mulation buffer to handle partially reflective and par- qqf
tially refractive surfaces, instead of merely switching C f J
at the critical angle. Anisotropic reflections [19] could we create the 3-D transform
be simulated based on the reflecting plane's orienta-
tion. Speedup can be achieved by precomputation of a d 0 g
shadow volumes during static geometric periods. Vis- b e 0 h (10) &
ibility checks between refractive surfaces can also be Mqq 0 0 0 0 '
used to reduce the number of scene renderings. Lc f 0 i

10 Conclusion which clears depth values and disables Z-buffering and fog.
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